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ABSTRACT

A boundary integral formulation for the analysis of
circular plate bending under lateral loads is developed using
Green’s functions. The formulation specifically applies to
annular plates with arbitrary boundary conditiorns. The plate
bending solution in the plastic range is determined using a
numerical method of incremental loading. A computer program tc
perform the required calculations was developed and is
presented. Results for three case studies are included and
compared with results obtained by other methods. Plate
behavior in the elastic range is in excellent agreement with
other analytical solutions, and in the plastic range is in
reasonable agreement with published results obtained using a
finite element method.

Thesis Supervisor: Dr. Amiram Moshaiov
Assistant Professor of Ocean Engineering
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radial curvature
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CHAPTER 1

INTRODUCTION

The solution of plate bending problems in the plastic
range has been approached using finite element, and more
recently, boundary integral methods (also called boundary
element methods ;. Unlike the finite element method, which
discretizes the inside of the plate into a number of small
elements, the boundary integral method discretizes only the
plate boundary, thereby reducing the order of the problem by

one.,

Many different approaches have been used to formulate
plate bending problems using boundary integrals, with perhaps
the most attractive proposed by Stern<l> and Bezine<2>., These
authors, working independently, developed a direct boundary
integal method using Green’'s functions to solve the general
plate bending problem in the elastic range. This work has been

extended by Moshaiov and Vorus<3> to include plastic behavior.

Symmetry is commonly used to reduce the size of the system

12




of equations needed to analyze a symmetric structure. In the
case of axisymmetrically loaded circular plates the problenm
becomes one-dimensional. For the linear elastic case, it has a
closed form analytic solution. However, some authors have
instead treated this circular plate problem as a two-
dimensional problem, perhaps for the sake of demonstration
(Kamiya and Sawki<4>). They have used symmetry to allow
discretization of a portion of the boundary instead of the

entire boundary.

This thesis develops a general formulation for solving
annular plate bending problems using boundary integrals that
reduces the problem to essentially a one-dimensional problem by

¥

the use of a "ring" type Green's function, Such a formulation
is most useful, inspite of the closed form solution, as it
allows the analysis of plates with different boundary
conditions and loads with one algorithm., Moreover, it permits
a solution in the plastic range, which is not possible with a
conventional analytic approach. In addition, the simplicity of

the one-dimensional formulation given here has a unique

significance for the teaching of boundary element methods.

Butterfield<5”> has developed a boundary element
formulation for the one~dimensional elastic beam bending
problem. Here, a similar approach is taken for the annular
plate. It is also extended to include non-linear behavior

using an incremental load method as outlined by Moshaiov and

13




Vorus. Numerical results for three different annular plate

configurations are presented and compared to results obtained
using other methods. A discussion of these results follows, as

well as suggestions for future work in this area.

14




CHAPTER 2

DEVELOPMENT OF THE GOVERNING DIFFERENTIAL EQUATION

This chapter reviews the derivation of the governing
differential equation for a circular plate subjected to a
symmetrically distributed lateral load. The derivation is

based on that provided by Timoshenko“8>, using Kirchoff’s

assumptions. It is, therefore, applicable only to the linear-
elastic case. Treatment of non-linear behavior is addressed in
Chapter 5.

2.1 Moment-Curvature Relationships

The first step in developing the governing differential
equation for a circular plate is to find a relationship between
moment and curvature. Curvature in the radial direction (K )
and the tangential direction (Kg) for a synmetrically loaded
circular plate is found using geometrical considerations. Ke,
which is the inverse of the radius of curvature in the radial
direction (R,.), can vary as a function of the distance (r) from

the plate center. Examining the plate of Figure 2-1 at a small

15




radial distance dr away from r, the slope (%) can be expressed
in terms of the radial distance r and the deflection (w; as

follows

dw
] = - — (2~1-1)
dr

The radial radius of curvature is
dr

R = —_—
d¢

giving an expression for the radial curvature in terms of w

1 dé d w
Kr = - = —_ = - —3 (2-1-2)
R dr dr
r
16
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Figure 2-1. Deflection, slope, and curvature relatio:..: s
in circular plate bending

Due to symmetry, the tangential radius of curvature is

constant at any given radius r, and for small deflections can

be expressed as

giving an expression for the tangential curvature

17
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1 [ 1 dw

K = —_ = - = - - ——
8

Re r r dr

To relate moment to curvature, consider the small plate
element illustrated in Figure 2-2. Define My, and Mg, the

radial and tangential moments per unit length respectively, as

follows:
h/2
M = J o 2z dz
r r
-h/2
(2-1-3)
h/2
Me = I og Z dz
-h/2
where h is the plate thickness. Assuming the plate is thin and

hence experiences a two-dimensional stress state, Hooke's law

yvields the following expressions relating stresses to strains

E
44 = — [ e €« v ¢ € ]
r (1_u2) r B
(2-1-4)
E
[+ = - o [ :ee + v e © ]
8 (1-v %) r

where E is Young's modulus, v is Poisson’s ratio, and ¢.® and
¢g® are the elastic radial and tangential strains, respec-
tively. In Chapter 5, which discusses non-linear behavior, a
distinction will be made between the elastic strain and the
total strain. In the plastic range, the total strain includes
elastic and plastic components, in accordance with the

following expressions:

18




where the superscript p refers to the plastic strain
components. Since Chapter 2 treats only elastic behavior, the

total strain is simply equal to the elastic strain.

Mg

Figure 2-2. Nifferentia. circular plate element.

Substituting Eq. (2-1-4) into Eq. (2-1-3) gives

19




[h/z
E
Moos . [
(l-v 3
-h/2
h/2
E
M = —
8 (1-v°) [
‘-h/2

Finally, from geometrical conside

are related by

which, when substituted into Eq.

moment-curvature relationship for

(2-1-5)

rations, strain and curvature

dzw

_ 2
dr

(2-1-6)

1 dw

- - — 2z
r dr

(2-1-5), give the desired

a circular plate

[ dzw v dw
Mr = - D - —
dr r dr J
(2-1-7)
1 dw dzw )
M = - D _—t+ v
§ | r dr dr? |
where D, the flexural rigidity, is given by
E h’
D = —_— (2-1-8)
12 (1-v )
20




2.2 Equilibrium Equations

For the moment-curvature relationships to be useful, an
equilibrium equations in terms of moments and shears must be
found. The governing differential equation is then developed
by substituting the expressions relating moment to curvature

into the equilibrium equation.

To find an equilibrium equation, consider first the
laterally loaded circular plate element illustrated in Figure
2-3, where Qp is the radial shearing force per unit length and
q is the distributed load (force per unit area}). The couples

acting along edges ab and cd due to radial bending moments are

ab: My, r d8
dM

cd: M+ dr [ r + dr ) de
dr

The shear forces acting along the edges are
ab: Q r ds8

er
Qr + ——dr
dr

cd:

[ r + dr ) ds

21




@, q
Q fdr ar

"y ‘

(EERENIENENIR I |
! r+erar t7 7 ] ‘ ‘
vt () v .

cigure 2-3. Shear forces and momeals acling on dilleresntd

plate element.

Because of symmetry, there are no shear forces acting
along edges ad and be, leaving only the tangential bending

moments

These couples can be resolved into components acting

perpendicular to the axis ro (which are equal and opposite and

thus cancel), and components acting along the ro axis which

have a total magnitude of

22




Me dr ds8

Summing up all the couples and neglecting the small change 1in
shear force across the element (i.e. dropping the dQ terms)

gives the following equilibrium equation

dM_
Mp + —F dr { r + dr ) de - M_ r de
r
dr

- Mg dr d8 + Qr r d8 dr = 0

This equation is further simplified by ignoring higher order

terms to give

dM
r

r dr 8 r

Also, from equilibrium in the z direction
dQ

_——r = q (
dr

2.3 Differential Equation for Circular Plate Bending

Having found the desired equilibrium equations, the moment
curvature relationships of Section 2.1 are now used to develop
the governing differential equation for the circular plate
bending problem. Specifically, substituting Eq. (2-1-7) into
Eq. (2-2-1) results in a third order differential equation to

describe the response of a circular plate to lateral loading

23




which can be rewritten t

3

[ 4

dr

Differentiating Eq. (2-3
2-2) results in a fourth
cf r, w, D, and q

d w 2 daw

- 3
dr r dr

which can be expressed i

biharmonic operator as

where

w 1 dw Q
e = - (2~-3-1;
r r dr D

o provide an expression for shear

w 1 d’w 1 dw
b om —— - - — (2-3-2)

3 ? 2
r dr r dr

-1) with respect to r and using Eq. (2-

order differential equation in terms

st
o
z

—

dw q
+ - — = — (2-3-3}
r dr r dr D

n a more concise form using the

2-3-4)

1
[~ ]

2 d 1 d 1 d

r dr-’ r dr v odr

24




CHAPTER 3

A BOUNDARY INTEGRAL METHOD

This chapter describes a boundary integral method, and
how it can be used to providc a general method of solution of
circular plate bending problems. A one-dimensional beam

bending problem is used to illustrate this method.

3.1 General Formulation

Solution of Eq. {2-3-3) analytically as a boundary value
problem by applving known boundary conditions is possible
i Timoshenko) . However, this approach requires special
attention for each plate configuration and load distribution.
This difficulty is compounded when considering problems
involving plastic behavior which should be solved numerically

due to the non-linear behavior in the plastic range.

Therefore, a general method is sought wherein the same

procedure can be used to solve a variety of problems, thus

lending the problems to computer solution techniques. One such

method, adopted for this work to examine circular plate

>
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bending, is the boundary integral method.

Stern and Bezine, working independently, obtained a
general formulation for plate bending problems in terms of
boundary integrals. These integrals involve displacements,
slopes, bending moments, and shears on the plate boundary.
Both authors used the following reciprocal identity, which can

be derived using Green’'s identity:

D ] ( w 'w - w e ) dQ =
G G
Q

J [ogw + Mg ¢ - 4w - woa Jdr (3-1-D)

T
where

Q - plate domain
r - plate boundary
D - flexural rigidity
9* - biharmonic operator
W,Wg - deflections
¢, 8 - slopes
M,Mg - bending moments per unit length
Q,Qg - shear forces per unit length

To arrive at the boundary integral equation, wg is selected as

a Green's function,

26




3.2 Beam Bending Problem

Butterfield has presented a reduced form of Eq. (3-1-1)
for the one-dimensional case of beam bending, which is
developed in the discussion that follows. As a first step,
Butterfield multiplies both sides of the governing differential
equation for a beam by a second function and integrates over

the beam’s length, giving
EI 9" d = A d (3-2-1
w wG X = wG X 1)
0 Q
where A is the distributed load per unit length, I is the area

moment of inertia of the beam cross section, and the operator

7* is defined for the beam case as

Integrating the left hand side of Eq. (3-2-1) by parts

several times, Butterfield develops the equation

‘
] [ A Woe — W ET © waq ) dx =
0
L
{ e Q + ’G M - MG ¢+ QG w
0
Recognizing that for the second function
EI1V = A
¢ ° G
the preceding equation can be rewritten as
27
.. B PR




{ W Q + ¢, M - M, ¢ + Q. w (3-2-2)

To gain some physical insight into Eq. (3-2-2) it is
useful to recall Betti’'s reciprocal work theorem. This theorem
states that for an elastic structure subjected to two
independent causes (e.g. loads), the total work done by the
first cause in moving through the displacements resulting from
the second cause is equal to the total work done by the second
cause in moving through the displacements produced by the first
cause<7”. The theorem, as it applies to our beam bending
problem, can be better understood by examining the examples of

Figure 3-1.

28
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an
s
o
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¢ ij Mj

Figure 3-1. Examples of Betti's reciprocal work theo -

In Figure 3-1la, the product of load P; and displacement
51J is equal to the product of load PJ and displacement bji.
Similarly, in Figure 3-1b, the product of moment M; and slope

$ is equal to the product of moment Mj and slope *Ji-

1j
This concept can be applied to understand Eq. (3-2-2),
with the i cause the actual loading or applied moment condition
for the system of interest and the j cause the loading or
applied moment condition of the second function. In this
equation, the A term represents the external load in the system
of interest, which when multiplied by the deflection wg
described by the second function, gives a reciprocal work term.
Similarly, the $5 term is a slope for the second function,

which when multiplied by the moment M for the system of

29




interest yields another work term. This concept applies to all
the terms of the equation, which are combined according to

Betti's theorm of reciprocal work to yield the given equality.

For Eq. (3-2-~2) to be useful for solving the beam bending
problem, Butterfield chooses as the second function a Green’s
function which is based on a singular loading condition:; that
ig to say, a point load. If the point load of unit magnitude
is applied at either x=0 or x=L, the second intergral term on
the left hand side of Eq. (3-2-2) takes on the value of the
boundary condition of the beam of interest. Usually, some

attention should be given to cases where the integrals become

singular.
This yields two equations. However, in general, beam
bending problems involve four unknown boundary condi‘ions. For

example, if simple supports are specified on both ends, the
moments and deflections at the two ends are known to be zero,
while the shears and slopes are not known. Therefore, two

additional equations are required.

To obtain two more equations, derivatives of the first two

equations are taken. This gives an additional Green's
function. Boundary conditions can now be obtained by solving
the four equations simultaneously. Knowing the boundary

conditions, the beam problem can be solved for interior points

using Eq. (3-2-2) and appropriate derivatives with the point

30




load positioned at the location of interest.

The formulation for the beam bending problem outlined
above is a direct approach based on Green’s identity,
Butterfield also develops a boundary integral equation using
the more intuitive indirect method. For the circular plate
formulation that follows in Chapter 4, only the direct method

is used.

31




CHAPTER 4

DEVELOPMENT OF THE FORMULATION FOR CIRCULAR PLATES

This chapter presents a general method for solving
circular plate bending problems in the elastic range using
boundary integrals. The resulting integral equations are
analagous to those developed by Butterfield for the one-
dimensional beam problem, which are discussed in Chapter 3.

Treatment of non-linear behavior is discussed in Chapter 5.

4.1 Description of Plate Geometry

Figure 4-1 depicts a symmetrically loaded annular plate,
and includes notation that will be referred to throughout the
development of the integral equation and the discussion of the

selected Green's functions.

Important symbols are defined as follows:




W, WG - deflections

¢, 4G - slopes

Me Mgr - radial bending moments per unit leyrg:h
Mg,Mgg - tangential bending moments per unit length
Qr,Qgr - radial shear forces per unit length

Qg,Qg9 - tangential shear forces per unit length

a - plate outer radius

b - plate inner radius

h - plate thickness

r - radius of interest

q - distributed load per umnit area

Figu Symmetrviroaliy (oadad annug e
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4.2 Development of Integral Equation

Though the laterally loaded circular plate bending problem
is two-dimensional, symmetry reduces the problem to essentially
a one-dimensional type problem. Therefore, it is expected that
the integral equation developed by Butterfield for the beam
case can be adapted to the case of the circular plate. This

equation (Eq. (3-2-2)) is repeated below:

To obtain some indication of what the circular plate
integral equation will look like, a non-rigorous method is
first used to adapt Eq. (3-2-2) to the circular plate case,

followed by a more rigorous mathematical development.

In the non-rigorous approach, a first step is to replace
the integral on the left hand side with an area integral and
the line load per unit length A with the load per unit area q.
Next, adjustments are made to reciprocal work terms on the
boundaries /{right hand side of Eq. (3-2-2);. Specificatly, the
shear terms are replaced with the product of the radial shear
per unit length and the total length (2xr), observing that for
symmetrical loading, the tangential shear Qg is 0. Moment
terms are replaced with radial moments, since there are no

tangential moments on the boundaries. These moments must also

34




be multiplied by the length (2zr) to give total moment. The

resulting expression 1is

22 _a
[ 1 { q Wg W aq. r dr d8& =
0 b
a
- - -0 _
[ 2xr [ wg Q¢ kM- Mo b+ Qo W ) (4-2-1)
b
which reduces to
a
{ [ q W, W g, ) r dr =
b
a
- - + -2-2
{ r { Wo @ ¢ kg M- M Qg w ] ] (4-2-2
b

So far, it has only been asserted that the integral
equation for the circular plate case should have a form similar
to Eq. (4-2-2). To obtain the exact integral equation, a

direct method is used.

As a starting point for the direct method, consider the

following expression:

U = _ ~ r dr

This expression can be written slightly differently as V

35




dw, d'w a g dw 1 dw d’w
_ G G
oo el L eyl e
dr dr b b dr r dr dr
and
2 a a N 2 3
i dw d L dw 1 d wG d wG
v = — —5 T - -— - — ¢t 3 r
dr dr b b dr r dr dr

Recalling Eq. (2-3-2), it is possible to rewrite these

expressions in terms of shear Q

dw dzw a
_ G
U = ~— S r -
dr dr b
a dw, Q_ 8 dw, dw
— - r dr -~ - —  — dr
b dr D b ° dr dr
and
dw dzw a
_ G
\ = _— s T -
dr dr b
g 4w %, 1 dw dw,
‘ —_ - r dr -~ ~ — -——" dr
b dr D b T ir dr

Setting U equal to V and canceling some terms gives

36




de d w J de Qr
— —  r - — -~ r dr =
dr dr° b b dr D
2 a a
dw d W dw QGr
—_ ;> T - _ - r dr
dr dr b b dr D

The two integral terms above are integrated by parts, with

the operator of Eq. (2-3-5) used to simplify the expressions

de Qr Qr 4
— = r dr = w. r — - Vww, r dr
dr D 6 G

b b b

a a a
dw QGr _ QGr 4
—_— = r dr = wr — - Vw. wr dr
dr D D G

b b b

which, when substituted into the previous equation, yield

dw . d w Q
G r .
— —r ~ w, r — + VvV ww, r dr =
dr dr2 G D G
b b b
dw d’w a Q a a
G Gr s
— — r - W r — + J v wG w r dr
dr dr b D b b

After some simplification, this expression becomes

J [ V‘w r w - v ws row ) dr =

a

dr dr dr dr2

37




The last equation bears a close resemblance to Eq. (d4-2-
2y, except for sign differences and the fact that terms
involving the second derivative of deflection have yet to be
replaced by terms involving moment. To accomplish the latter,
the following expression is added to the third term of the
right hand side of the preceding expression, and subtracted

from the fourth term

v dw de

r — — —

r dr dr

Through Eq. (2-1-7) this gives

a
v v’ d -
[ worowe - Wy T W r =
b
1 ke
— - -~ - (4-2.%
[ r Ya Qr w QGr ¢ MGr ‘G “r J (4-2-0 1
D
b
which can be rewritten using Eq. (2-3-4: as i
a
J [ q w. U W r dr =
b
a
[ r W Qr - oW QGr E MGr - ’G Wr 4-2
b

Remarkably, with the exception of a sign difference that 1is
attributable to the difference in sign convention, this
expression is identical to FEq. (4-2-2), which was asserted

based on the integral equation developed by Butterfield.
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1.3 Selection of a Green's Function

As 1s the case for the beam described in Chapter 3, Eq.
‘4-2-4) 13 useful only if wg is chosen as a Green's function
with certain properties. As will become evident later in this
chapter, the Green’'s function must describe a ring louaded plate
to solve circular plate bending problems, just as a Green's
function describing a point loaded beam was used tc solve the

beam bending problem.

To solve the beam problem, Butterfield choses a Green’s
function describing an infinitely long beam with a point load.
It is not essential that a Green's function for an infinite
beam be used. In fact, as one would expect from Betti’s
reciprocal work theorem, a Green’'s function describing a finite
geometry will work as well, provided the function also

describes the response to a point load.

Applying Butterfield's method to the circular plate case,
a Green's function representing the ring loaded plate shown 1n
Figure 4-2 1s adopted. The Green’s function and associated
derivatives are included in Appendix A. It should be noted
that the outer and 1nner radii of the Green’s function {(c and
d: need not coincid: with the outer and inner radii of the

actual plate (a and b:.
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That a simple support is chosen for the outer plate radius is
not important; a plate clamped at both the inner and outer
radii would also have been suitable. What is important is that
the loading condition for the Green’s function case be a ring

load. To simplify calculations, a ring load of magnitude 1 is

used.

4.4 Solution of Integral Equation

Having selected a Green's function, the next step is to
obtain a form of Eq. (4-2-4) suitable to solve the actual plate
bending problem. Rearranging terms, Eq. (4-2-4) can be

rewritten as
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a a
Qe W T dr = { r “wg Qr + ’G Mr - MGr ¢+ QGr w }
b b

a
+ I q W dr (4-4-1)
b

The ring load may be expressed in terms of the dirac delta

function 6(1,10)
D V w - q - 6( r
G r, :)

Substituting this expression into Eq. (4-4-1) and making use of

the following property of a dirac delta function

-]

J 6(r,ro) w r dr = r. w(rzro)
-
gives
a
r, wir=r ) = [ r [ “Wa Qr + ’G Mr - MGr ¢+ QGr w ]
b
a
+ ] q we dr (4-4-2)
b

By choosing r, at radius a, and then at radius b, the
deflection w in the left hand side of Eq. {4-4-2) is the
deflection at the boundary, which is either a known or unknown
boundary condition. Hence, two equations are available to

solve for the four unknown boundary conditions.
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To obtain two more equations, Eq. (4-4-2) is
differentiated with respect to r,. This yields the second
Green's function, which is evaluated with ry at a and then
again at b. The second Green's function corresponds to the
slope of the plate, which at r=a and r=b is again either =a
known or an unknown boundary condition. There is thus now a
complete set of four equations to solve for the four unknown

boundary conditions.

Eq. (4-4-2) can be rewritten as

a
r
w(r=ro) = [ - [ “Wg Qr + ’G Mr - MGr ¢+ QGr W ] ]
r
o b
a
1
+ Fo [ q Wy T dr (4-4-3)
b
Differentiating this expression with respect to r, gives
a
dw(r=r ) r dw dé dM dQ
—_— o . - - G Qr + G M - _Gr ¢+ Gr w
dr r dr dr  F dr dr
o () o o o [ b
1 a de w\r:ro)
+ - qQ —  r dr - _ (4-4-4)
o b dr r,
Eqs. (4-4-3) and (4-4-4), evaluated both for rgy=a and ro=b,
give rise to a system of four equations that when solved
simultaneously, yield the four unknown boundary conditions. In

matrix form, these equations can be written as
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[ aw(a) '—wG<a,a) fc(a.a) —Mcr(a,a) ch(a.a) rQr(a)
bw(b) . ~wG(a,b) §G(a,b) _MGr(a’b) QGr(a’b) Mr(a)
-aé¢(a) -wé(a,a) Qé(a.a) -Mér(a,a) Qér(a,a) $(a)
-bé(b) —wé(a,b) t;(a,b) —Mér(a,b) Qér(a,b)J w(a)
—wG(b,a) iG(b,a) —MGr(b,a) QGr(b’a) Qr(b>
—b —we(b,b)  #.(b,b) -M, (b,b) Q, (b,b) M (b)
1 1 1 1
-wG(b.a) QG(b,a) —MGr(b,a) QGr(b.a) $(b)
b 1 1 1
—wG(b,b) iG(b,b) —MGr(b,b) QGr(b’b) w(b)
[ [a
q w,(r,a) r dr
G
b
a
J q wG(r,b) r dr
. b (4-4-5)
a 1
[ q wG(r,a) r dr - w(a)
b
a 1
[ q welr,b) rdr - w(b)
b
where
( ](s,t) = ( ](r:s;r =t)
and
| ) i
dr
[o]

Using Gauss elimination, the preceding system of equations is

solved for the four unknown boundary conditions.

The final step is to calculate deflection, slope, moment

and shear across the plate. Deflection and slope are found
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using Eqs. (4-4-3) and (4-4-4) by substituting in the
calculated boundary conditions and evaluating the expressions
at the value of r, of interest. Moment and shear are
determined using Eqs. (2-1-7) and (2-3-2), which require
calculation of the second and third derivatives or w with
respect to ro. Differentiating Eq. (4-4-4) results in the

desired expressions

a
2 2 2 2 2
d w(r-ro) : i ) d wG o d ’G " ) d MGr . . d QGr .
drz r dr2 r dr’ r dr’ dr2
o [°] o o o o b
1 a dsz 2 dw(r=ro)
+ - q L dr - - — (4-4-6)
r dr r dr
o b o} o o
and
d’wir=r ) a’ d’s d’M d’q :
wirsrgd o |r ¥g G Gr Gr
T e - -0 9 M - = 3 w
dr r dr dr dr dr
o o o o o ¢} b
1 a dawG 3 d;w(r:r )
+ qQ —  r dr - - S (4-4-17)
r dr r dr
o b o o o

making a complete solution for the circular plate bending

problem in the elastic range possible.
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CHAPTER 5

NON-LINEAR BEHAVIOR

This chapter develops a boundary integral formulation for
circular plate bending problems that includes non-linear
material behavior. Specifically, the boundary integral
equation developed in Chapter 4 for the elastic plate is
modified to‘include plastic moment terms to account for the
plastic behavior. An incremental load method similar to that
used by Moshaiov and Vorus can then be applied to arrive at a

solution to the plate bending problem once yvielding has begun.

5.1 Plastic Stress—-Strain Relationships

When considering plasticity, strain can be thought of as
having two components: an elastic component and a plastic
component. In cylindrical coordinates, which is applicable to
the two-dimensional circular plate case, the total strain ¢ can

be expressed in terms of these two components as
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(5-1-1)

where the superscripts e and p refer to the elastic and plastic

strain components, respectively.

Eq. (2-1-4), which provides the relationship between
stress and strain for a linearly elastic material, can thus be
rewritten in terms of the total strain and plastic strain as

follows:

5.2 Plastic Moment-Curvature Relationships

To develop the moment-curvature relationships with

plasticity, Eq. (5-1-2) is substituted into Eq. (2-1-3) to give

h/2




E
M =
T (1-v%)
E
M = -
8 (1-v™)
where the radial and

are defined as

Recalling the relationships for total strain of Eqg.

-h/2

N
a
N
|
<4
T

(5-2-1)

N
o
N
1
K4
~

tangential plastic moments, M.P and MgP,
h/2
E
5 [ Erp + v sep] z dz
(l-v )
~h/2
(6-2-2)
h/2
E P P
_— € + v o€ ] z dz
(1~u2) 2] r
~h/2
(2-1-6) and

performing the integration over the plate thickness yield the

moment~curvature relationship for
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plasticity

d w v dw
M. = - D — v - — - M P
dr r dr
(5-2-3)
2
1 dw v dw p
M = -D |- = + - — - M
8 r dr r dr2 8

5.3 Governing Differential Equation With Plasticity

Chapter 2 develops the governing differential equation for
a circular plate in the elastic range by substituting the
elastic moment-curvature relationships into the elastic
equilibrium equation. In this section, a similar approach 1is
used to develop the governing differential equation with
plasticity. The difference here is that the moment-curvature

relationships (Eq. (5-2-3)) include plastic terms.

Substituting Eq. (5-2-3) into the equilibrium equation for

a circular plate (Eq. (2-3-1)) gives

d (5-3-1)

where the tilda is used to distinguish the fuct that the shear
includes plastic effects. Differentiating this expression once

with respect to r gives the fourth order governing differential
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equation for the plate with plasticity

d w 2 dw 1 d'w 1 dw
+ m e—_—— =~ = + = —_— =
dr’ r dr’ r’odr’ r3 dr
P 24 P P
L Lfzat et
D D r dr dr2 r dr
which can be rewritten using the operator defined in Eq. (2-3-
5) as
) q 1 2auP d’Mrp 1o P
v ow = - - - - — + 3 - = — (5-3-2)
D D r dr dr r dr

This equation is identical to the equilibrium equation for the
elastic case with the exception of the terms that include

derivatives of the plastic moments. Note that these terms may
be thought of as additional pseudo loads that must be combined

with the actual load to account for the plastic behavior.

5.4 Boundary Integ:al Formulation With Plasticity

In the preceding chapter, the governing differential
equation 1s used to develop a boundary integral formulation for
a circular plate in the elastic case. This section presents a
similar approach to develop a boundary integral formulation

for the plastic case.

As a starting point, Egqs. (2-3-4) and (5-3-2) are

substituted into Eq. (4-2-3) to give
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a a
J Qg W r dr = [ r [—wG Qr + ‘G Wr - MGr [ QGr w J )
b b
(5-4-1)
a a8 (24aM P d’M P 1 am P
r r 8
+ qQ w, r dr - — + - = — w. r dr
I G ] r dr dr2 r dr G
b b
This equation is not yet in a form that is usable for
solving the circular plate bending problem. In the first

place, there are several terms that include derivatives of the
radial or tangential plastic moments, which are not generally
known across the plate. Secondly, the shear and moment terms
Qy and M, evaluated at the boundaries are not the actual shears
and moments, since they were developed based on elastic

considerations only.

To resolve these concerns, the integral term involving
plastic moments in Eq. (5-4-1) is integrated by parts as

follows:
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am P d’m P am P
r r 8 _
w5 2 — + r 7 - — dr =
dr dr dr
b
a
am P
Mg wrp + r — - Map
dr }
b
a
dw, daM P
- — M P + r— —Mep dr
dr r dr
b

Integrating by parts a second time and collecting terms gives

am P a‘m P am P
> r _ 8 .
wg 2 — + r 5 —_ dr =
dr dr dr
b
a
dm P dw
wa Mrp + r T - Map - r — Mrp
dr dr
b
a 4 s
w dw
+ _S Mep + T ——76 Mrp dr
dr dr
b

Using the above relationship and choosing a Green's function

that describes a ving loaded plate as is done for Eq. (4-4-2),

Eq. (5-4-1) becomes
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Recall that Q, and M, represent shear and moment for the
elastic case. However, they are not the actual shear and
moment for the plastic case. With plasticity, the actual
shears and moments are combinations of elastic and plastic
terms. From Eq. (5-3-1), the shear relationship with
plasticity is

1 am P
d = @ +« —iMP + T - nP
r dr
and from Eq. (5-2-3), the moment relationship with plasticity

is

where, as with the case for shear, the tilda is used to
distinguish the fact that the moment term includes plastic
effects. When substituted into the preceding expression, these
expressions give the desired boundary integral formulation for

the circular plate bending problem

52




a
r
wir=r ) B [ - e Qr + ’G Mr - MGr ¢+ QGr W ] }
r
o b
a
1
- — g wo T dr
Yo
b
a 2
1 de d W
- - M P 5 e M P ar (5-4-2)
8 r
r ) dr dr
¢y

By evaluating Eq. (5-4-2) with the ring load positioned
both at rgy=a and ro=b, two equations are obtained to solve for
the unknown boundary conditions. Eq. (5-4-2) is differentiated
with respect to ry to obtain a second Green's function. This,
via Eq. (2-1-1), gives an expression for slope of the actual
plate. The second Green's function is evaluated with the ring
load positioned at rg=a and ro=b, to provide the remaining two

equatlions.

Differentiating Eq. (5-4-2Z) with respect to ry gives
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iz(r:ro) : r
dr r
o o
a
1 de
+ q —
ro ) dr0
b
a
1 d [
Yo dr
b

In matrix form,

a
dw dé dM dQ
_ _ __G dr . ___G ﬁr _ __Gl" $ . __Gr W
dr dr dr dr
o o o o
b
w(r=r )
r dr - °
r
o)
2
dw d w
ar J y P, _Ldr rM P dr (5-4-3)
-] r
dr
o

the system of equations to be solved for

the four unknown boundary conditions for the non-linear case

can be written using the notatiorn of Eq. (4-4-5) as follows:
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aw(a) -wG(a,a) iG(a,a) -MGr(a,B) QGr(a,a) Qr(a)
bw(b) -wG(a,b) $.(a,b) Mg (asb)a r(a.b) M (a)
= a
-ad(a) —wé(a,a) fé(a,a) -Mér(a,a) Q'r(a,a) ¢(a)
-b#(b) —wé(a,b) $.(a,b) —Mér(a,b) Qg (8,b) w(a)
. B N
wG(b.a) iG(b,a) MGr(b,a) OGr(b,a) Or(b)
) N —wG(b,b) QG(b,b) —MGr(b,b) QGr(b'b) ﬁr(b)
1 1 1 1
-wc(b,a) fc(bfﬂ) _MGr(b’a) OGr(b,a) #(b)
1 1 1 1
“Wglb,b)  #.(b,b) M. (b,b} Q, (b,b) w(b)
( a
I q wG(r,a) r dr
b
a
[ q w.(r,b) r dr
b G
+ (5-4-4)
a 1
I q w.(r,a) r dr - wi{aj
G
b
a 1
j qQ wG(r,b) r dr - w(b)
b J
a 2 1
dw_.{(r,a) d w,.(r,a)
_G Mep + ZG rMP dr
dr dr r
b
a 2
dw .(r,b) d w. (r,b)
G Mep + 2G rMP dr
dr dr r
b
a 2
dw_ (r,a) d w (r,a)
a4 | =S a | —F© }
- dr m P ~Ldr ru P dr
8 s r
dr dr
o
b
a 2
[ dw .(r,b) d w.(r,b)
[ [ 4 [ e 4 G
dr Map + dr r Mrp dr
dr dr’
o
b
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Observe that Eq. (5-4-4) is identical to Eq. (4-4-5)
except for the additional moment terms in the last matrix of
Eq. (5-4-4). These additional terms account for the plastic

behavior.

To find moments and shears across the plate, expressions

for the second and third derivatives of deflection with respect

to r, are required. These expressions follow:
d’w(r= a’ d’s d’m a4’ °
w r-ro) _ r Y6 4 G o Gr QGr
T - — T T2 Qr * 2 Mr T LA s ¥
dr r dr dr dr dr
o o o o o o b
a8 2
1 d ' w 2 dw(r=r )
o
+ - q . r dr -
r, dr ° r dr
b o o
a 2
dw d w
d2 _G d2 G
1 dr dr2
- - MgP ¢+ —— ruM P ldr (5-3-5)
) drz dr2
o o
b
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r d w
— |- ___2 §
r dr
o) o
a 3
d w
G
q —, r dr
dr
b o
a
da EﬁG
dr M
dr
o
b

a
3 3 3
d ’G N d MGr d QGr
. M —, ¢+ . W
dr r dr dro
1) o b
3 d'w(r=r)
3 w{r=r_
r dr
o
d2
3 wG
d 2
. odr rM P | dr o (5-4-6)
dr3
o
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CHAPTER 6

NUMERICAL SOLUTION

This chapter describes the numerical procedure that was
used to solve the circular plate bending problem in both the
elastic and plastic ranges. The incremental load approach used
in the plastic range is firat described. A brief description
of the computer program that was developed based on the
equations of Chapters 4 and 5 follows, including a discussion

of some aspects of numerical methods used in this program.

6.1 Incremental Load Method

Once plastic deformation starts to occur in the plate, the
linear relation between stress and strain is not valid. as
discussed by Mendelson<8>, strains in the piastic range are no
longer uniquely determined by the stresses, and in fact depend
on the loading history. Therefore, it is not possible to use
the relationships developed in Chapter 5 to directly arrive at
a plate bending solution given a loading condition outside the
elastic range. Rather, an incremental approach must be used

wherein the load is increased in small steps once yielding
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occurs at any point in the plate, and the complete stress state

for the plate is determined before load again is increased.

The incremental load method used for this analysis is
based on that adopted by Moshaiov and Vorus, and is frequently
seen in finite element solutions of structural analysis

problems. The principal steps of this method are outlined

below:

1. Using the plate parameters and loading conditions for
the bending problem at hand, an elastic solution is obtained

with the equations developed in Chapter 4.

2. The load at which the onset of yielding will occur in
the plate is calculated based on the stress state determined in
Step 1. The selected yield criterion is the von Mises
criterion, which for the symmetrically loaded circular plate

case has the form:

where oo is the equivalent, or effective, stress which
represents the von Mises yield surface. Yielding will occur

when oo equals or exceeds the uniaxial yield stress (Sy).

3. Unknown boundary conditions at yielding are

determined using Eq. (5-4-4), with plastic moments initially
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set equal to zero. Total strains at predetermined integration
points are calculated using Eqs. (2-1-6), (5-4-3) and (5-4-5).
From Eq. (2-1-4), the stress state at the integration points at
yielding is determined, and is stored to be later updated as
load is increased. Also stored for later updating are the

deflections, slopes, moments and shears across the plate.

q. The load which caused yield is then increased by a
small incremental amount. The increments of the total strains
resulting from this incremental load are calculated using Eq.
(2~1-6) in an incremental form, from which elastic strains can

be calculated by means of Eq. (5-1-1).

5. Using Eq. (2-1-4), the elast{c siress increment
corresponding to the applied incremental load is calculated.
This incremental stress is added to the stress stored in Step 3
to give the total stress at the end of the load increment. A
check is made throughout the plate using the yield criterion of

Step 2 to determine where vielding has occurred.

6. In those plate regions where yielding has occurred,
the plastic strain increment (that is, the plastic strain due
to the incremental load) is calculated. Only materials that
exhibit elastic-perfectly plastic behavior as depicted in
Figure 6—1 have been examined. However, tae method can be used
with other material behavior, such as strain hardening. For

materials exhibiting elastic-perfectly plastic behavior, the

60

S



plastic strain increcent bep is the total incremental strain

determined from Eq. (2~-1-6). This is shown in Figure 6-1.

7. The plastic moments are determined using Eq. (5-2-2).

8. Steps 3 through 6 are repeated, with the plastic

moments calculated in Step 7 used as an input to Eq. (5-4-4).
Step 7 is repeated and the plastic moments compared to the
moments calculated previously in Step 7. Iterations are
performed as necessary until these values converge, according

to a predetermined convergence criteria.

9. After convergence of plastic moments is achieved in
Step 8, stresses, plastic strains, deflections, slopes, moments

and shears throughout the plate are updated.
10. Another increment of load is applied, and Steps 3

through 9 above are repeated, using the plastic moment from the

previous load step as an initial estimate for plastic moment.
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6.2 Computer Program Description

Computer programs written in the Fortran 77 language have
been developed to solve the circular plate bending problem and
are included as Appendix B. Three programs, supported by nine

subroutines, are used.

The programs INPUT and LOAD create data files which are
used by the program MAIN to solve the bendiag problem. INPUT
and LOAD prompt the user for information describing the problem
to be solved, such as material properties, plate geometry,
boundary conditions and plate loading conditions. In addition,

certain adjustable parameters are input, which include step
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sizes for the load increments, number of integration
increments, and the desired percentage for convergence of the

plastic moment increments. The program MAIN determines the

plate bending solution, both in the elastic and plastic ranges.

A flow diagram outlining the major elements and overall

logic path of this program is shown in Figure 6-2.
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Figure 6-2. Computer program flow diagram.
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6.3 Numerical Methods

Eqs. (5-2-1), (5-4-4), (5-4-5) and (5-4-6) require
integrations to be performed across the plate. These
integrations are accomplished by a trapozoidal rule numerical
integration scheme. It was found that 10 increments across
both the plate radius and the plate half thickness gave

satisfactory results.

To ensure convergence of plastic moments, a root mean
square average of the the plastic moments at each station
across the plate is calculated and compared to the root mean
square average from the previous iteration. An agreement of
less than 0.1% was used for the snalysis work for which results

appear in Chapter 7.
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CHAPTER 7

RESULTS AND DISCUSSION

This chapter presents results of analyses performed on
three different plate configurations using the computer program
described in the preceding chapter. Results in the elastic
range for all thre: cases are compared with the analytic
solution from Roark®9”, and for one case in the plastic range
where published results using another solution method are
available. Descriptions of the case studies are given in
Sections 7.1 through 7.3. A discussion of the results is given

in Section 7.4.

7.1 Simply Supported Elasto-Plastic Annular Plate

The annular plate shown in Figure 7-1 is first examined.
The plate is simply supported at both the inner and outer
radii, and is subjected to a uniform lateral load. A material
exhibiting elastic-perfectly plastic behavior as depicted in
Figure 6-1 is used. The yield stress (Sy) is 16 ksi and the
Young's modulus is 10x103 ksi. Material properties and plate

dimensions were selected to allow comparison with results
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obtained using a finite element method by Armen et al<10>,

Plate deflection at yielding is shown in Figure 7-2, which
also includes results from the analytic solution given by Roark
for comparison. Plate deflections for the present solution at
several loads in the plastic range are shown in Figure 7-3, as
well as results obtained by Armen et al using a finite element

method of analysis.

Figure 7-4 shows the plastic zones in the plate at the
three load conditions depicted in Figure 7-3. Results obtained

by Armen et al are also included.

g,= 16 KSI
£ = 10x10° KSI
v = 0.24

10.0 IN

l
M]_ﬂ\i - L

1
—

Firgure 7-1. Simply supported annular piate nroblem
description.
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7.2 Clamped Elasto-Plastic Annular Plate

The annular plate shown in Figure 7-5 is next examined.
The plate is clamped at both the inner and outer radii, and is
again subjected to a uniform lateral load. A material
exhibiting the same properties as described in Section 7.1 is
used. For the clamped annular plate case, results obtained
using other methods could not be found for the plastic range.
Consequently, material properties and plate dimensions were
selected to allow a qualitative comparison with results for the

simply supported plate of Section 7.1

Plate deflections at the onset of yielding are shown in

Figure 7-6, and at several loads in the plastic range in Figure
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7-7. The deflection at yielding using the analytic solution

given by Roark

Figure 7-8 shows the plastic zones

load conditions depicted in Figure 7-7.

ST 16 KO
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is shown in Figure 7-6 for comparison.
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Figure 7-6. Deflection of clamped annular plate at the
onset of yielding
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7.3 Simply Supported/Guided Elasto-Plastic Annular Plate

The third annular plate to be examined is shown in Figure
7-8. The plate is simply supported at the outer radius, with
the inner radius guided. The plate is again subject to a
uniform lateral load. A material exhibiting the same

properties described in Section 7-1 is assumed.

For this case, results obtained using other methods could
again not be found for the plastic range. However, a solution
for a continuous simply supported circular plate has been
obtained by Moshaiov and Vorus, and offers a qualitative

comparison with the results for the simply supported/guided
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annular plate.

Plate deflection at the onset of yielding is shown in
Figure 7-10 and at several loads in the plastic range in Figure
7-11 for the present analysis method. The deflection at
yielding obtained using the analytic solution from Roark is
shown in Figure 7-10 for comparison. Figure 7-12 shows the
plastic zones in the plate at the three load conditions
depicted in Figure 7-11 for the present solution. Corres-
ponding results from Moshaiov and Vorus for the continuous

v!ate of Figure 7-13 are shown in Figures 7-14 and 7-15.
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7.4 Discussion of Results

The results presented in Sections 7.1 through 7.3 for the
elastic range are uniformly in excellent agreement with the
results using the analytic solutions given by Roark. This is
as should be expected, since the elastic range solution using

the present method is based on a closed form analytic solution.

Results in the plastic range, while reasonable, are not in
as close agreement with other published results. The only case
where data for a direct comparison could be found is the
configuration discussed in Section 7.1. From Figure 7-3, the
deflections at loads of 652 psi and 852 psi for the present
solution are in excellent agreement with the finite element

results of Armen et al.

Results for the annular plate of Section 7.1 at the 1052
psi load are not as encouraging. Deflections and the extent of
the plastic zone are greater for the solution obtained by Armen
than for the present solution. To explain this difference, the
size of the integration and load increments has been varied,
but it shows little effect on the results. The reason behind
this difference is not known. However, it is believed that it
might be due to a programming error either in this report or in
the reference. Also, differences could arise by not taking
into account additional integration terms arising from the

singularity at r=r,, as discussed in Appendix A.
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Finally, it is of interest to compare the results for the
simply supported/guided plate of Figure 7-9 to the results for
a simply-supported circular plate obtained by Moshaiov and
Vorus. It is recognized that the two cases are not equivalent.
However, one would expect the two plates to behave globally in
a similar fashion. This is in fact the case, with both
deflections and plastic zones showing reasonably good agreement

in view of the differences between the two configurations.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1 Summary

This thesis has developed a formulation for solving
axisymmetrically loaded annular plate bending problems using
boundary integrals. This particular formulation is unique in
that it treats the annular plate as a one-dimensional problen,
using "ring" type Green’s functions to determine unknown
boundary conditions and arrive at a plate bending solution.
The formulation allows a numerical incremental load method to
be used in the plastic range for the treatment of non-linear
behavior. Results in the elastic range show excellent
agreement with results obtained using a conventional analytic
solution. In the plastic range, results are in reasonable

agreement with those obtained using a finite element method.

This thesis treats the two-dimensional problem of analysis
of axisymmetrically loaded annular plates as a one-dimensional

problem. Using a method of solving one-dimensional problems
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with boundary integrals developed by Butterfield, the thesis
demonstrates that a closed form solution for the annular plate
problem can be obtained. It further demonstrates that this
approach is suitable for the use of an incremental load method

to obtain a solution in the plastic range.

The formulation developed in this thesis is advantageous
over a8 conventional analytic solution in that it allows a wide
range of problems with different loading and boundary
conditions to be soived using a single algorithm. Further, the
simplicity of the approach is useful from an educational

cstandpoint in the teaching of boundary element methods.

8.3 Recommendations for Future Work

There remains room for much additional work in this area.

Some suggestions follow:

1. A formulation for axisymmetrically loaded continuous
circular plates remains to be developed. The work presented
here lays a foundation for the continuous plate formulation.
However, extending this method to the continuous plate case may

require some modifications.

2. In developing a formulation for the simple beam
problem using boundary integrals, Butterfi:ld uses both a
direct and an indirect method, and shows that they yield the

same regsult. Only the direct method is presented in this
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thesis. The indirect method is a more intuitive approach than
the direct method, and offers advantages in furthering the
understanding of a boundary integral solution. It would,
therefore, be worthwhile to pursue an indirect method as well
as a direct method in developing a boundary integral

formulation for circular plate geometries.

3. The Green’'s functions selected for this anlysis
involve many terms and are awkward from a computational
standpoint. More thought needs to be given to selecting a
"ring" type Green’s function that is simpler and therefore
offers advantages in simplifying calculations and reducing

computational time.

4. For the plastic range, the lack of close agreement
between the results presented in this work and those obtained
by Armen et al using a finite elemet method need to be better
understood. Additional comparative data should be found or
developed to increase confidence in the results presented in

this work.
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APPENDIX A

SELECTED GREEN’S FUNCTIONS

This Appendix presents the selected Green’s functions and
required derivatives that are used to solve the plate bending
problems in this analysis. The functions which mathematically
describe the deflection, slope, radial and tangential moments,

and shear are obtained from Roark.

A.l Description of Geometry and Sign Conventions

As discussed in Chapter 4, the first Green’'s function
selected for this analysis describes the response of annular
plate that is simply supported at the outer radius and
unsupported along the inner radius to a ring load. Figure A-1

depicts this plate configuration and important notation.
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Grc

Figure A-1. Representation of Green’'s function used in
the analysis.

Roark uses a sign convention with deflection wg positive
upward, slope #; positive when the deflection wg increases
positively as r increases, moment M, positive when creating
compression on the top surface of the plate, and the shear
force Qgpr positive when acting upward on the inner edge of an
annular section. Subscripts ¢ and d refer to the radial

position.

This sign convention differs from the sign convention of
Timoshenko, which has been adopted for this analysis.
Accordingly, adjustments must be made. Specifically,
Timoshenko takes deflection to be positive downward and shear

to be positive when acting downward on the inner edge of the
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plate, such that the signs for these items as given by Roark

must be changed.

For slope, Roark uses a convention opposite to that of Eq.
(2-2-1) and the convention used by Timoshenko. This
difference, combined with the difference in defining the sign
of deflection, effectively cancel each other, so the sign of
slope from Roark does not change for this analysis. Finally,
for moments, Roark and Timoshenko use the same sign convention,

so no sign changes for moment terms are necessary.

The formulas in the sections which follow include a number
of general plate functions and constants that are not depicted
in Figure A-1. Functions L and G and their derivatives are
included in Section A.7:; constants F and C are included in

Section A.8.

A.2 Singularities

it is not possible to evaluate the Green’s function and
assocliated derivatives at the exact radial location where the
ring load is applied, due to singularities. To avoid this
problem on the boundaries, the ring load is positioned a small
distance inside the outer plate radius ard outside the inner
plate radius (0.00001 inches for the results presented in
Chapter 7). During final review of this thesis, it was noted
that because of the singularity at r=rg, the domain integrand

involving plastic moments of Eqgqs. (5-4-2) through (5-4-6)
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includes singularities. Therefore, the limiting values should
be explored and a correction applied in way of the singular-
ities. Insufficient time was available to repeat the analysis
with the applied correction to see its effect on the results.
Note that this correction affects only the solution in the

plastic range.

A.3 Deflection, Slope, Moment and Shear

The following expressions describe deflection wg, slope
¢;, radial moment Mg,., and shear Qg corresponding to the first

Green’s function:

r
We T T ¥ga T fgq TF v oeg 0 G,
2
r
’G = ’Gd F4 L G6
D
Mor T Ya T F 7 Pg T S,
r
o o
QG = g T <r—ro>
r
where
‘(¢
pGC . Ig L
W - - G _
Gd 3
D c,
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D = plate flexural rigidity (Eq. {(2-1-8:
g = magnitude of ring load
<r—ro>0 = singularity function

% represents a singularity function.

The expression <r-rg>
The function is equal to zero if r<r,. If r>r,, the brackets

become like any other brackets. Hence, for r>rg, <r-rg>° is

(r-ro) to the power of 0, which equals to 1.

A.4 First Derivative of Deflection, Slope, Moment and Shear

The expressions which follow describe the first deriv-
atives with respect to ry of wg, #¢g, Mg, and Qgr. The first
derivative of wg corresponds to the second Green’s function

required by the analysis.

3

de ) ded d’Gd r dG3
—_ = R — — —_— r F‘ + pG P —
dr dr dr D dr

o [ o o
dé d+ *de

G Gd v
— = — F - oL =~ —
dr dr D dr

o o

dMGr d*Gd D daG
—_— = —_— —_ F7 - pG r —
dr dr r dr

o o) o
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dQ [
_G¢r = ¢ {r-r >0
dr r
o
where
: c dL9
dr D [ dr
o 7 o
o e o
dr D C, dr
o ? °

A.5 Second Derivative of Deflection, Slope, Moment and Shear

The following expressions describe the second derivatives

with respect to rgy of wg, #*g, Mgy and Qgp

2G = - 2Gd B id r Fl * pG - __23
dr dr dr dr
[ o [e)
2 2 2 2
d ‘G : d de . o, : S—Gs
dr2 drz ¢ G dr2
[ o
2 2 2
d_MGr = i_’Gd - F P '] r d—G
dr’ dr’ r G dr *
o o) o
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where

ad
<
a
N
[
“w

d wad ) ) PGt dr B d I3
' dr D [of dr2
7 o
)
2 2 2
} d ’Gd i PgC d L9
dr’ D C, dr’
o 7 o

A.6 Third Derivative of Deflection, Slope, Moment and Shear

The following expressions describe the third derivatives

with respect to r, of wg, #g, Mg, and Qgp

3 3 3 3
d W : . d Yed _ d *Gd Cr . : E_GJ
dr’ dr’ dr’ ' G poar’
o o o
3 k] 2 3
d ’G . d ’Gd r d G6
e - LI Pe T T
dr dr dr
o o
3 3 3
! d'Me.  d#gy D d’e,
s - s - F, - g ¥ —
dr dr r dr
) o
d’e
3Gr - 0
dr
o
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where

d'L
C __9
3 3 1 3 3
d %ad i ) PG drQ ) d L3
dr’ D c dr
) 7 )
3 2 3
d ’Gd i} PaC d Lg
dr3 [ dr3
o 7 o

A.7 Plate Functions L3, L9, G3, G6 and G9 and Their

Derivatives

dL3 1 3 r; r;
-7 = 1n§ —° o+ 1 <21 -5 -
dr 4 ¢ [+) c c
o
2 Y
d L, 1 6 r r, 1
'-2_ = - 2 ln% -, T
dr 4 ¢ c o c r
o [
3
d LJ 1 (6 [ c ] 1 1
—_— = —_— — 1n = -1 + -_ + —_
dr3 4 ¢ t c2 To c2 r2
o o
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r
4 r [+)
2
3 (1 - wv)r
° } {r-r >
2 o
r
1 2 (1l + v) 6 r (1 v) o
_ + > <r-ro>
4 r r r
o
1 2 (1 + v) o
- T , (1 v) <rer >
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A.8 Plate Constants F,, Fq, Fy, C,, and C-,

l + v d 1 - v r d
Fooo= — In % + - - =
2 r 4 d r
1 d r
F, = - [ (1 + v) = + (1 - v) -
2 r d
1 r d
Fooo= - (1 - v) - - -
2 d r
1 + v d 1 - v c d
¢, = — 1ln % + - - -
2 c 4 d c
1 ) c d
c, = — (1 - v) - - -
2 d c

A.9 Derivatives of the Green’s Function With Respect to r

The equations describing non-linear plate behavior
included in Section 5-4 are in terms of the first and second
derivatives of the Green's function wg with respect to r.

These derivatives can be expressed with the aid of Eqs. (2-1-1)

and (2-1-7) in terms of moments and slopes as follows:

de
JP—— = - ’G
dr
d’ M
wG _ Gr v
3 = - - + - ,G'
dr D r

Expressions for slopes and moments for the Green's

92




function (&g and Mg,) are available and have been presented in
Section A.3. It is further noted that Eqs. (5-4-2) through (5-
4-6) require derivatives of the above two expressions with
respect to r,. This is accomplished via the expressions for
derivatives of #g and Mg, with respect to r, included in

Sect ons A.5 through A.7 above.
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APPENDIX B

COMPUTER PROGRAMS

This Appendix contains the computer programs developed to
perform the analysis work. A flow chart showing the overall

program structure is presented in Chapter 6.

The Appendix is organized with the programs INPUT and LOAD

presented first, followed by the program MAIN. The supporting

subroutines for the program MAIN follow that program.
{
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c

Cs

CEEs AR SR R AR N E SRR ISR SRR R BRI N RS SR XIS SR XSS SIRIXEASNEEBRES S
Cs

Cs PROGRAM INPUT

Cr

Cs THIS PROGRAM ALLOWS THE USER TO DEFINE THE PROBLEM OF INTEREST
C® AND TO SET CERTAIN ADJUSTABLE PARAMETERS SUCH AS NUMBER OF DEPTH
C3 INTEGRATION INCREMENTS. LOADING CONDITIONS ARE INPUT USING THE

Csx PROGRAM LOAD. TO RUN, THIS PROGRAM MUST ACCESS THE FILES GEOM.DAT,
C* BC.DAT,BCPOS.DAT AND ADJ.DAT

Cs

CR BRI SR E AR AN A SIS R RSP N USRS A SRR RRRRTARTRILARAT AL
cs

c
PROGRAM INPUT
c
IMPLICIT REAL*B (A-H,0-2)
CHARACTER$] BFLAGl.4),BFLAG2{(4,, RESP
CHARACTER®19 LBL(8),LGEOM(9)
CHARACTER#*25 LADJ(6)
o
REAL®8 ADJ(7),BC(4),GEOM(9),NU
[+
INTEGER POS(8),BCPOS{B:!,M,N
C
Cs

CHEESIXREBIRXBEERAZE TSRS TR ERXFXRTXAFFAREIXTARSRIFRAFXALEXXTRREELS
Cs

Cs INPUT MATERIAL CONSTANTS AND PLATE GEOMETRY. THE FLEXURAL

Cs RIGIDITY IS CALCULATED BASED ON THE INPUT PARAMETERS N If THE
Cx TOTAL NUMBER OF PARAMETERS

Cs
CEEELSIF 2RI A ARSI LA LSRR AR RETRSRRERAXRFETISNARFKNICARTXRRXXALLXERERY
Cs
C
N:=9
c
LGEOM{1:="OUTER RADIUS A = '
LGBOM{2)="INNER RADIUS B = '
LGEOM(3 POISSON RATIO NU = '
LGEOM(4 PLATE CONSTANT D =
LGEOM(5 THICKNESS T =
LGEOM{6 YIBLD STRESS = '
LGEOM’ 73 ="YIELD STRAIN = '
LGEOM:8'="'ULTIMATE STRESS = ’
LGEOM 9 ="ULTIMATE STRAIJN = '
o
WRITE. x 1
1 FORMAT /,6X, 'WOULD YOU LIKE TO SEE THE CUERENT PLATE DIMEN-IDING
- L4, 2X%, " AND MATERIAL CONZTANTS Y &~ °
READ(%,.30: RESF
C

1F  HESP .EQ. 'V’ THEN
WRITE 3,2
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2 FORMAT{(//,2X, ' THE CDRRENT VALURS FOLLOW. NOTE THBAT A ZERO’,
* /+2X,'VALUE 15 SHOWN FOR D WEEN T AND E ARE GIVEN AND VICE',
+ /,2X,'VERSA ...',/)

OPEN(HR,FILE="GBOM.DAT',STATUS="0LD")
WRITE(%,30) ' *
0o 8 I=1,N

RRAD(6,70) GEOM(I)

WRITR(%,6) LGEOM(I),GBOM(I)

6 FORMAT(2X,A22,F20.10)
8 CONTINUE
CLOSE(6)
ENDIF
Cc
WRITE(®,9)
9 FORMAT(//,6X,'DO YOU WISH TO INPUT OR CHANGE GEOMETRY OR’
+ /,2X,’MATERIAL CONSTANTS (Y/N) ? ',\)
READ(#,39) RESP
c
IF (RESP .BQ. 'Y’) THEN
c

WRITE(%,10)
10 FORMAT(/,2X, 'INPUT THE VALUBS USING DECIMAL NOTATION ....", /!
Do 12 1=1,3
WRITE(%,20) LGEOM(I)
READ(%,70) GROM(I)
12 CONTINLUE

po 13 1:5,9
WRITE($,20) LGEOM(I)
READ(%,70) GEOM(I)
13 CONTINUE
GBOM(4)=GEOM(6)/GEOM(7)%GEOM(5)%%3.0/12.0/(1.0-GEOM(3}%%2.0;

C
OPEN(6,FILE='GEOM.DAT" ,STATUS="'NEW’)
DO 15 I=1,N
WRITEB(6,70) GEOM(I)
15 CONTINUE
CLOSE(6)
ENDIF
c
c

CEEXSERERAESERERI XSRS EXEEXALERERAERXREARREXLXXLF R AL ETARAEENELR

C

C INPUT PLATR BOUNDARY CONDITIONS

[

CEEXETLEXIEL RS XAEAXLEERAERENRIAERAEEERASIRRNX RN AR S S AL AXBXLAIETRE AR

C

o
LBL{1)="SHEAR AT A
LBL(2)="MOMENT AT A
LBL{3)="SLOPE AT A
LBL{4)="DEFLECTION AT A
LBL(5}="SBEAR AT B
LBL(6)="MOMENT AT B
LBL(7)="SLOPE AT 8

Gonowow oo




LBL(B)="DEFLERCTION AT B = °

OPEN(14,FILB="BCLBL.DAT',STATUS="NEW')
po 155 1=1,8
WRITB(14,156) LBL(I)
155 CONTINUE
156 TFORMAT(A22)
CLOSE(14)

WRITB(%,160)
160 FORMAT(//,6X,'WOULD YOU LIKE TO SBE THE CURRENT PLATE BOUNDARY'
* , /42X, "CONDITIONS (Y/N; 7 ’\)
READ(#,30) RESP

IF (RESP .BQ. 'Y') THEN
OPEN(11,FILE="BC.DAT’,STATUS='0LD")
OPEN(12,FILE="BCPOS.DAT',STATUS="0LD")
WRITE(s$,30) ' °
DO 165 I=1,4

READ(11,70) BC(I)
165 CONTINUE
Do 180 1=1,8
READ(12,100} BCPOS{I}
IF (BCPOS(I) .GT. 0) THEN
WRITE(%,186) LBL(1),BC(BCPOS(I))
186 FORMAT(2X,A22,F20.10)
ENDIF
190 CONTINUE
CLOSE(11:
CLOSE(12:
ENDI¥

WRITE(*,17)

17 FORMAT(//,6X,’D0O YOU WISH TO INPUT OR CHANGE PLATE BOUNDARY'
+ /. 2X, 'CONDITIONS (Y/N) 7 ' ,\)
RRAD(%,30; RESP

I¥ (RESP .EQ. 'Y') THEN
WRITE(%,19)
19 FORMAT(//,6X,' INDICATE WHETHER THE BOUNDARY CONDITIONS FCR THE',
® /,2X,'PLATE ARB KNOWN OR UNKNOWN BY TYPING IN THE LETTER "U"’,
& /,2X,’FOR UNKNOWN BOUNDARY CONDITIONS AND HITTING RETURN FOR’
& /,2X,"ENOWN BOUNDARY CONDITIONS',//}

WRITEB(%,20) 'SHEAR AT & > '
READ(*,30) BFLAGL(1,

WRITR(%,20) °'MOMENT AT A 7 °
READ(%,30) BFLAGL(2)

WRITE(#%,20) 'SLOPE AT A °
READ(#*,30) BFLACI(3!

WRITE(%,20) 'DRFLECTION AT A °> °
READ(%,30) BFLAGL(4)

WRITE(®,20) 'SHEAR AT B '
READ(%,30) BFLAGZ2(1:
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WRITE(3%,20) °MOMBNT AT B ? '
READ(#,30) BFLAG2(2)
WRITE(%,20) 'SLOPE AT B ~ '
READ(%,30) BFLAG2(3)
WRITE(*,20) 'DEFLECTION AT B 2 '
READ(%,30) BFLAG2(4"

20 FORMAT(2X,A22,\}

30 FORMAT(AL)

WRITE!(%,40)
40 FORMAT !/, , 6%, 'TYPE IN THE KNOWN BOUNDARY CONDITIONS USING °*
@2x, 'DECIMAL NOTATION WHEN PROMPTED’,//}

OPEN{8,FILE="BFLAGI.DAT’ ,STATUS="NEW")
OPEN{9,FILE="BFLAG2.DAT' ,STATUS="NEW")
OPEN(10,FILE="BC.DAT' STATUS="NEW":
bo 50 1=1,4
WRITE(8,30) BFLAGI(I}
IF (EFLAG1(I) .NE. 'U') TBEN
L=L+1l
WRITE(%,20) LBL(I)
RBAD(%,70) BC(L)
WRITE(16,70) BC(L)
ENDIF
50 CONTINUE
DO 60 1=1,4
WRITE(9,30) BFLAGZ2{I)
IF (BFLAG2(I: .NE. 'U') THEN
L=L+1
WRITE(%,20) LBL!I+4}
READ(%,70) BC(L)
WRITE(10,70) BC(L)
ENDIF
60 CONTINUE
70 FORMAT(F20.10}
CLOSE(8)
CLOSE(S)
CLOSE(10)
OPEN(11,FILR="POS.DAT', STATUS="NEW")
OPEN(12,FILE="BCPOS.DAT',STATUS='NEW';

L:=0
D0 80 I=1.4
IF (BFLAGY(I: .EQ. 'U' THEN
L=L+]
POS{1:=L
BCPOS:
ELSE
MiM- ]
BCPOS 1 =M
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|
|

80

S0

100

c
Cs
Cxxx

POSI1}=
END1F

WRITE(11,100° POS{I!
WRITE.12,100' BCPOS'I.

CONTINUE

DO 90 I-5,8

IF (BFLAG2(1~-4) .BQ. 'U’') THEN
L=L~1
POS(1)=
BCPOS{1::=C

ELSE
M=M+]
BCPOS!I):=M
POS(I1)=0

ENDIF

WRITE(11,100) POS{I)
WRITE({12,100) BCPOS(I)

CONTINUE
CLOSE(11)
CLOSE(12)
FORMAT(11}
ENDIF

EEBRABENEERERR SRR FEIXLTEIALLATNLLRTXREIFEALRREXRNSEANSESERL O LD

INPUT CALCULATION ADJUSTMENT ITEMS. N IS THE NUMBER OF
INPUT PARAMETERS IN THIS SUBMODULE. OBSERVE THAT SUBSEQUENT TO
THE DEVELOPMENT OF THIS MODULE, PARAMETER NUMBER 3 WAS NO LONGER
ACCESSED FROM ANY OTHER PROGRAM, AND THEREFORE SERVES ONLY AS A
DUMMY PARAMETER. THE REMAINING PARAMETERS HAVE THE FOLLOWING
MEANINGS

]. BEBPSILON REFERS TO THE DISTANCE BETWEEN THE RING LOAD
AND THE BOUNDARY. NOTE THAT IN SOME INSTANCES, LETTING
EPSILON BQUAL TO ZERO CAUSES A DIVIDE BY ZERO TYPE ERROR.

2. THE INCREMENTS FOR R REFER TO THE STATIONS ACROSS
THE PLATE. THIS APPLIES TO THE NUMBER OF INTEGRATION
INCREMENTS FOR DISTRIBUTED LOADS, AS WELL AS THE NUMBER
OF DATA POINTS FOR THE RESULTS.

3. THIS PAKAMETER IS NO LONGER USED

4., THIS REFERS TO THE EXTENT BY WHICH THE GRFENS
FUNCTION PLATE GEOMETRY OVERHANGS THE ACTUAL PLATE.
FOK EXAMPLE, A VALUE OF 0.5 MEANS THAT THE INNER RADIUS OF
THE RING LOADED PLATE DFSCRIBED BY THE GREEN'S FUNCTION
OVERHANGS THE ACTUAL PLATE BY 0.5 UNITS
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LR 5. THE LOAD INCREMENT IS TBE PERCENTAGE OF THE
Ct ORIGINALLY SPECIFIED LOAD MAGNITUDE THAT IS APPLIED DURING
Ct RBACH LOAD INCREMENT AS THE PLATE 1S LOADED IN THE PLASTIC

Cx RANGE

cx

ok | 6. THIS IS THE NUMBER OF INTEGRATION INCREMENTS USED TO
Cs DETERMINE TBE PLASTIC MOMENT ACROSS THE PLATE.

Cs

Cs 7. BMS IS THE ROOT MEAN SQUARE OF THE PLASTIC MOMENT

C* INCREMENTS FOR EVERY POINT IN THE PLATE WHERE THE PLATE IS
Cs KO LONGER ELASTIC. THIS IS COMPARED WITH THE RMS VALUE FOR
Cs THE PREVIOUS INCREMENT, TO SEE WHETHER THE SOLUTION HAS
Cs SUFFICIENTLY CONVERGED. 1% CONVERGENCE MEANS THESE NUMBERS
Ct AGREE TO WITHIN LESS THAN I%
Cs
CERISIE XX EEAERS SRR XL R AR BAXTSRIL AR SLXREEI AR AR S XS RRXALEL LRSS 28T
Cs
c

N=7

LADJ(1}="EPSILON FOR RO = ’

LADJ{2)="'"INCREMENTS FOR R = °'

LADJ(3)="WIDTH INTG INCR = '

LADJ(4)="BOUNDS FOR A AND B = °

LADJ(5)="'LOAD INCREMENT = ’

LADJ{6)="DEPTH INTG INCR =

LADJ({7)="% RMS CONVERGENCE = '

WRITE(x,102)
102 FORMAT(//,6X,'WOULD YOU LIKE TO SEE THE CURRENT ADJUSTABLE'
hd ./, 2%, 'PARAMETER SETTINGS™ .
READ:%,30: HESP
IF (RESP .EBQ. 'Y') THEN
OPEN/16FILE="ADJ.DAT’ ,STATUS='0LD")
WRITE{%,30: " ~
Do 108 I=1,N
READ(16,70) ADJ(1I)
WRITE(#%,106) LADJ{I),ADJ(I)

106 FORMAT(2X,A25,F20.10,
108 CONTINUE
CLOSE(16)
ENDIF
c

WRITB(%,110)

0 FORMAT(//,6X,’D0 YOU WISE TO INPUT OR CHANGE ANY COMPUTATIONAL',
- /.2X, "ADJUSTMENT ITEMS (Y/N} 2 ' ,\)
READ(%,30: RESP

1

—

1F -RESP .EQ. 'Y . THEN

WHITE *,120
20 FORMAT L INPUT THE VALUES USING DECIMAL NOTATION
DG 125 1:31.MN
WRITE »,126 [ADJ. 1"
READ .76 ADJ !
bl CONTINUE
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126

130

FORMAT:2X,A25,\;

OPENLIB.FILE:'ADJ.DAT'.STATUS='NEW'7
po 130 I=1,N
WRITE(13,70) ADJ(I)
CONTINUE
CLOSE(13}

ENDIF

WRITE(%,135;

FORMAT(///,"' YOU ARE LEAVING THE INPUT MODULE',///)

END
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o4

CrEsT ISR IS LSRR SRR N R TRAXAEIRSISIERTLEEERISREILNATLIRIIRRILTAS
Cs

Cx PROGRAM LOAD

[an 3

[oF] THIS PROGRAM ALLOWS THE USER TC INPUT THE DESIRED LOADING

Cs CONDITION FOR THE PLATE. UNIFORM DISTRIBUTED LOADS, RAMPS, AND
C* PARABOLICALLY DISTRIBUTED LOADS ARE PERMITTED, AS WELL AS RING
C® LOADS. TO RUN, THBIS PROGRAM MUST ACCESS THE FILE LOAD.DAT.

ca

Ccs USING THE INPUT DATA, THE PROGRAM CALCULATES THE TOTAL LOAD
Ct PER UNIT LENGTR THAT ACTS ON A RING OF THE PLATE SURFACE OR 4
C*x WIDTH DETERMINED BY ADJUSTABLE PARAMETER #3 OF TBE INPUT

C* PROGRAM

Ck .
CHEEEE AR I KRR E AR SN A E S KA E SRR RN B RN A KRR R XSS SFESXILTLIXSXSTIIIRTNE
o2 3
c
PROGRAM LOAD
c
IMPLICIT REAL%*8 (A-RH,0-2)
CHARACTERx]1 RESP
CHARACTER*30 LBL{4)
REAL%B LD(50)
INTEGER N
[+
LBL:1)="MAGNITUDE AT OUTER RADIUS = °’
LBL!2)="DISTANCE FROM PLATE CENTER '
LBL.3)="MAGNITUDE AT INNER RADIUS !
LBL{4)="DISTANCE FROM PLATE CENTER = '
c
OPEN.6,FILE="LOAD.DAT’,STATUS="0LD"}
READ(6,90) LD
N=INT(6.0+2.0%LD(6})
CLOSE( 6"
c
WRITE($,10)
10 FORMAT(//,’ DO YOU WISH TO SEE THE LOADING CONDITIONS',
- /7 Y/ 7NN

READ(%,60 RESP
IF (RESP .EQ. 'Y') THEN
WRITE{%,15)
15 FORMAT!//,’ THE EXISTING LOADING CONDITIONS FOLLOW ...',//1
DO 40 I-1,4
WRITR(*,30) LBL(I1),LD(I,

30 FORMAT{2X,A30,F20.10}
40 CONTINUE
WRITE.*,6C ° °

IF «LD. 5. .E2. 1.0 THEN
WRITE(%,80 'LOADING IS LINEAR’

ELSE
WRITE 3,80 'LOADING IS PARABGLIC’
BNDIF
wWRITE ®,60 '
35
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43
45

46

50

60

70

75
80
g0

100

110

po 45 1=7,6+INT(LD(B))

J=3+2
WRITE(%,60) '’
WRITR(% 43! 'MAGNITUDE OF RING LOAD',I-6, ' = ', LD'J
WRITE(%.43) 'LOCATION OF RING LOAD',I-6, ' = ',1D!J-!
FORMAT(2X,A24,13,A3,F20.10:

CONTINUE

ENDIF

WRITE'%,46)

FORMAT(//,2%,'DO YOU WISH 70 CHANGE THE LOADING CONDITIONS',

* 2yt (YN 2 LN
READ( 2,60, RESP

IF (RESP .EQ. 'Y') THEN

WRITE($,50:

FORMAT(//,2X,'DO YOU WISh TO CHANGE THE DISTRIBUTED LOAD™.
+ /) (Y/N) 2N

READ(*,60) RESP

FORMAT(AL)

IF (RESP .BEQ. 'Y') THEN

WRITE(S,70)

FORMAT(//.2X, 'SPECIFY TER LOAD PROFILE USING DECIMAL',
. NOTATION ... ",//)

po 75 I=1,4
WRITE(%,80) LBL(I)
READ(3,90: LD/ I}

CONTINGE

FORMAT:{ 2X, A30,\

FORMAT(F20.10)

WRITE(*,100)

FORMAT(//,2%,'1S THE LOAD LINEAR OR PARABOLIC (1/P" ° '
READ(#%,60) RESP

IF (RESP .B@. 'L’) TBEN

LD(5) = 1.0
ELSE

LD(%) = 2.0
ENDIF

ENDIF

WRITE(%,110)
FORMAT(//,2X,'DC YOU WISH TO MODIFY ANY RING LOADS (Y/N:@ "
READ %,60) RESP
1F RESP .EQ. °'Y':' THEN
WRITE %,120
FORMAT: ,2%, ' THE NUMBER OF RING LOADS {INTEGER = '
READ $,130. N
FORMAT: I3
LD & -REALIN

ko5
0O 200 1:1.%
fR-2
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WRITE .60 ' °
WHITE 8,210 ‘'MAGNITUDE OF RING LOAD', 1, ’'= °
READ 8,90 LD K
WRITE %,210 'LOCATION OF HING LGAD ',I, '= '
READ. 2,90 LD K-1:

ve CONTINLUE

Ti6 FOHMAT . 2X,A23.13,A2,";

ENDIF

OPEN. 7. FILE:="LOAD.DAT', STATUS="NEW')
PO 219 1:1,50
WHITE 7,90 LD I
219 CONTINUE
ENDIF

WRITE ,022

0
22C FORMAT. .. 6X,"'YOU ARE LEAVING THE LOADING MODULE’,.
END
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Cs
CEsBFP SRR IR NI R R RN ERSERR SRS RER RS RR AR ARSI REASSIRSTASRRES
Cs

cs CAlL THE SUBROUTINE YLD, WBICB WILL RETURN A LOAD MATRIX
Cs SUCH THAT YIBLDING HAS JUST STARTED TO OCCUR IN THE PLATE
o2}

CESBEIRE SRS BT RBERESSEREREE ST LERERNTRSLEISESRTRATRRRRASSINSISREES
Ccsx
c

CALL YLD(EEK,IMAX,LDMATI:
c
cs
CESRIEREEANEX SR EN S SR EF AT SS A XTI RSB IR RSNNRELAL ST ERRERETEATRIRAES
Cx
cs REPEAT THE PROCESS, AND THEN CALL UPDATE TO REVISE OUR STATE
Cs MATRIX TO REFLECT THE CONDITION OF THE PLATE AT THE ONSET OF
Cs  YIELDING
Ccs
CEESIRETRERS AL SRR KESSARRRRISAXITSARBATRXLIRLILEAAIIREBSREREITLIRERES
cs

CALL AMATR(BFLAG1,BFLAG2,BC,BCPOS,POS, LDMAT], LHS, AMAT}

CALL GAUSS(LHS, AMAT,X)

CALL BCM(POS,BC,X,BCMAT}

CALL SOLVER(LDMATI,BCMAT)

CALL UPDATE{(STT!,IMAX,OUT,LDMAT]}, LL, LDMATO

CALL RESUL{M,STT1,COUNT,LDMATO:
C
Ccs
Cr IR E I AR E RS R R AN R S NN R AN E XTI S ARSI S R R LR SRR ST RA XA EEPXLITIFINITXS
Ccs
cx NOW, INPUT AN INCREMENTAL LOAD, AND COMPUTE THE RESULTING
Cs MOMENTS ,DEFLECTIONS BTC., USING AS AN INPUT THE PLASTIC MOMENTS
Cs (IF ANY, AND OTHER DATA FROM THE PREVICUS LOAD CASE
Cs
CEEEEEE LR SRR A S AR RRBEI IS RES ST ARSI SFLESRRFIRFRLILXARRLZIILIIAXER
cs
c

DO 110 I=1,NN

LDMATL(1)=ADJ{5,3LDMATO( T,
116 CONTINUE

116 CONTINUE

C
C WRITE(«, 1301 STT.IMAX,S8) ,STT/IMAX, 10;
C 130 FORMAT(5X,'MRP IN - ’,F20.10,' MTP IN = ' ,F20.10

CALL AMATR BFLAGL,BFLAGIZ,BC,BCPOS . FPOS, LUMATI . LHS, K AMAT
CALL GAUSS LHS,AMAT.X

CALL BCM POS ,BC,X,BCHMAT

CALL SOLVER LDMATI,BCMAT
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Ccx
CHEBEEIET LRSS SSSE L AL SFEIBIIEEIRENINRLIIELEXSTSNTRSLELBANELIRESISEESTY
Cs
cs GO INTO THE SUBROUTINE FLAST TO CALCULATE THE INCREMENTAL PLASTIC
C3 MOMENTS AT BACH STATION ACROSS THE PLATE WHRRE YIERLDING HAS
C* OCCURRED. THE PLASTIC MOMENTS THAT ARE RETURNED BY PLAST ARE
C3 SQUARED AND ADDEBD TO THE TOTAL IN THE VARIABLE RMS. RMS IS
C*¥ COMPARED TO THE RMS VALUE FROM TBE PREVIOUS ITERATION (SAVED AS
Cs RMSi:
cs
CEXEEEERSRTTERNI SIS TS ESLANEET LS TR SEXNSSARE AL LS FSALSASTIXEXRIXIELRENTER
cs
c
RMS | =RMS
RMS=0. 0
1Z=NINT ADJ'6:
DO 200 I=1,NN
STT1(L,1):8TT(1,9"
STTL¢1,2)=8TT(I,10:
CALL PLAST(I.
IF (SET(1,12) .GE. GBOM(6)) THEN
BMS-RMS+STT(1,9,%82,0+STT(1,10 13320
ENDIF
200 CONTINUE
c
WRITE:$,810. RMS
810 FORMAT 5X%,'RMS = ',F20.i0
c
Cs
cs THIS WAS THROWN IN TO AVOID A DIVIDE BY ZERO, UNTIL THE PROCESS
Cx HAS BEEN "PRIMED"
[o 1
c
IF RMS .EQ. 0.90: THEN
RMS=1.0
ENDIF
c
IF {(ABS:SQRT{RMS)-SQRT(RMS1))/SQRT(RMS *100.0 .GT. ADJ{(7)! THEN
DO 815 1=1,NN
STT(1,9;=¢8STT/I,9:+STT1(1,1))/2.0
STT/1,10;=(STT(1,10)+8?T1(1,2;,/2.0
815 CONTINUE
GOTO 116
ENDIF
108
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c

[on ]
Crsx
ca
cs
cs
c»
cr
[}
Cs
cr
Cesx
ct
c

117
c
Cs
Cexg
cs
cs
cs
ca
cr
Caex
Ce

EEESAEXTIARRLIENLL LSS RIS SERESESXRTBSLLENISERLASEINLSTLIIILLSLES

CALL THE SUBROUTINE UPDATE. WEICHE WILL UPDATE OUR STATE
MATRIX AND OUR LOADING MATRIX TO REFLECT THE CONDITION OF THE
PLATE AT THE EN' OF THE LOADING INCREMENT. TEE PARAMETER
COUNT EFEPS TRA_XK OF LOAD INCREMENTS FOR PURPOSES OF DISPLAYING
RESULTS. WHEN COUNT=10, RESULTS ARE DISPLAYED AND WRITTEN TO
FILE. (IE BVERY 10 LOAD INCREMENTS.

FEXFEBIX XSRS ELEE SN LA SRR ES RIS RNTANIEBAEEIZLASERLINEILS

CALL UPDATE:STT1,IMAX,OUT,LDMATI 1L, 1DMATOD
CALL RESUL!™M,STT1,COUNT,LDMATO
1F COUNT .EQ. 10.0 THEN
COUNT=0.0
ENDIF
COUNT=COUNT-1.0
M=M-1
WRITB: %,117. M
FORMAT(5X,'LOAD INCR = ', I

ERESATISXSRAXASASREAISIRTSXSATRABSIRS S ALTSILNXENLTEES SR REEIRRBLLS
CBECK TO SEE IF EXCEEDING ULTIMATE STRAIN. IF SO, KiCK
UT OF THE PROCEDURE. IF NOT, WE SHOULD INCREMENT ON UP AGAIN
BY USING AS OUR INPUT THE INCREMENTAL 10AD MATRIX.
EE IS F SN AR R R LI TSRS IR SRS AR LTSRS ES A SRREXIRRXSIERRATLRS
IF +0UT ,NE. 1: THEN
GOTO 116
ENDIF
CALL RESUL.M,STTI,COUNT.LDMATO
CLOSE. 15

END
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C

cs
CEEXSXTIINLELAESEL S SRR LT LA 2 OLL PSS9 FITRLITLELRIELITXLTARERISIERR S
ce*
Ccs SUBROUTINE INTEG
fog 4
Ccs THIS SUBROUTINE IS CALLED BY THE PROGRAM MAIN TO CREATE THE
cs ABRAY LDMAT. THI!S ARRAY CONTAINS THE VALUES OF THE TOTAL LOAL
Cs FOR EACH SEGMENT ALONG THE PLATE RADIUS. IT IS CONSTRUCTED
cx BY USING THE AVERAGE OF THE TWO ENDPOINTS FOR DISTRIBUTED
Cs LOADS AND ADDING TO THIS VALUE THE MAGNITUDE OF ANY RING LOADS
cx THAT ARE SITUATED WITHIN THE SEGMENT.
Ccs
o SR R R R 2 R R R R A R 2 R R R R R R R R A R R R S RS R S R R R RS R 2 ]
[og ]
[
SURROUTINE INTEG.LD,LUMAT:
C
IMPLICIT REAL®8 {(A-H,0-27°
REAL®8 LDOMAT{50 ,LD(50), 6NU
INTEGER N
$INCLUDE: 'COMMON. FOR'
c
A=GROM{ 1}
B=GEOM: 2"
NU=GREOM (3"
D=GEOM 4
c
R=NINT. ADJ 2
DEL: A-B 'ADJ
R=B
N:=NINT 6.0-2.0%LD:61"
c
Cs

CESFFZRETLLETILTLLISXIERRIAISI A AE SRS R ATARE R ARSI RLERSLAXERAXFT S AR TISE RS
o8 3

Cs CHECE TO SEE 1F THERE IS A DISTRIBUTED LOAD. IF NOT, PROUCEED
Cx TO THE SBCTION FOR RING LQADS
(o 3
CERS SRR S IR S s U R AR S SRS B E IS TR 22N IX IR RR AR KSR LEIXBIESLRSIELILS
[oh §
c
IF "LD.l, .NE. 0.0 .OR. LD:3. .NE. 0.0° THEN

[

R:-B8

SLP- LT d b -1D 3

po 10¢
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c
Cs
CEEEXSESEE82 3823289825283 8238508 RSB RSS38S83E33 2RI ITEXSRSRILIL

Cs SECTION FOR LINEARLY DISTRIBUTEL LOADS

CESS2S2IXIELRFTUREISEITIRLRR AL /22082 LXNISTFARRELEESIYTEILILEILRLENEY
Cs

¢
ir LD & CEQ PR THEN
C
#-H+DEL
IF 'R-LD 2 GT. DEL. 10.0 THFN
LDMAT I :0.C
gLSE !F 'R .GT. LD 4 THEN
LOMAT I.-.LFs R-LD 4 -DEL. 2.0 -LD 3 ;3DEL
C
ELSE
C
LDMAT(1)=0.0
C
ENDIF
[
Cs
[ R R R R R L R R R R R R R R R R R R S S S R R R RS
Cs
Ce SECTION FOK PARABCLIC LCADS  ‘Y-X33Q
oK}

2328222833 g e X NT SR RRRSESILTSRISLTLISS2SXILILIXNSI SR LRSI TLTSL
[og ]

9
ELSE IF «1lDpS - .EQ. 2.0 : THEWN
o
R-R-DEL
P:-LD!{2'-LD:4: %22.0-°4.0, LD 1 -1D'3
I¥ .LD:1) .GT. LD:3} THEN
Y= R-DEL/2.0-1D{4 '%32.0/4.0 P-LD 3
ELSE
¥=-iL{D:2)-R-DEL,/2.0)%%2.0-4.0 P-LD 4~
ENDIF
C
IF ‘R-iD{(2' .GT. DEL’10.0: THEN
LOMATI1)=0.0
~

ELSF IF 'R .GT. LD 4 THEN
LDMAT I . :=Ys*DEL

ELSE
LhMAT 1 -G 0

ENDTF
ENTIF




o4
100

C
cs

CONTINUE
ENDIF

CESEEREXLERXESFLRNSEE ISR T R R EXAS RS A RIS BAEIRETSNSERL2LIXTRRIEED

SECTION FOR ADDING IN RING LOADS

CESETESEIABXLITIESIEREIETIINIRNEISSSL SRS EIELITIISISTSIEISNLESSIRTIEYESIRLIDYE

cs
C

300

ao

Cs

J=5
1F (N .NE. 0
DC 300 I-
J=J+2
L=INT((LD{J+11-B}/DRL)+1
LDMAT(L)=LDMAT{L)+LD(J)
CONTINUE
ENDIF

) THEN
7.6-NINTI{LD: 6 )

RETURN
END

CHILIXLLEEXEXEBIXBESITIRBEABESSEATBAEARABEIB IS FARAIRLEALIIN SR SR8 52

Cs
c»

SUBROUTINE AMATR

4%X4 A MATRIX,

THIS SUBROUTINE 1S CALLED BY THE PROGRAM MAIN TO CREATE THE

DETERMINE THE UNENOWN BOUNDARY CONDITIONS.

WHICH IS SOLVED USING GAUSS ELIMINATION TOQ

CEFSRAIFXXINRSRE AR RIS RRAKE LIS LR AR RR AR SR ENIIRRELEATSXLEFERRRIRRSS

Ccx
c

c

aw o

SUBROUTINE AMATR{BFLAG],BFLAGZ,BC,BCPOS,POS,LDMAT], LHS, K AMAT!

IMPLICIT REAL*8 A-H,0-2Z
CHARACTERS) BFLACL 4 |, BFLAG2 4

REAL*8 BC.4 . ,LHS & ,INC ,NU.GRNMTI1 -34.6 ,GHNMTZ 4.6 .

AMAT 4,4 ,LDMAT -4 ,LDTCT 4
STTAV 50,2
INTEGER PCS 8..BCPOS'8  M,N

INCLUDE. "COMMUN. FOR'

A-GEOM. ]

112

, LDMAT1 50

JMFRTOT 4

JMPTTOT 4




B=GBOM:(2:
NU=GEOM{ 3"
D=GEOM 4,
INC=ADJ(]:

DO 101 I-=1,4
LES(1)=0.0
IF (I .BQ. 1 .OR. I .EQ. 3: THEN
RO=A-INC
ELSE
RO=B+INC
ENDIF

R=aA

CALL GRNFNC(R,RO,NU,D,GRNMT "

R=B

CALL GRNFNC(®,RO,NU,D, GRNMT2
C
Ct
CEEXSXXERRESSEERLE SIS EXXLESEERNEI LIRSS EBLEBLICEIRSELERASSRLSENSS
cs
Cx REDUCE THE TERMS ORIGINALLY ON THE RHS TO A 4X4 MATRIX
Cs COEFFICIENTS (AMAT; AND A 4X1 MATRIX OF NON-CORFFICIENT
Csx TERMS (LHS)

Cx
CRs B Tt SRR SRS RE R NSNS B LR R RS RSS2SR RLSS SRS RAKREEIIISIRSIRSEILSS
Cs
C
IF (1 .EQ. 1 .OR. 1 ,BQ. 2) THEN
k=0
L=0
Lo 90 J=1.,4
IF (BFLAGL{J;, .NE. ’U’} THEN
E=K~1
LHS{I/=GRNMT1:J, 1 ;%BC K:2A%:-1.0 s J-1,-LHS(I)
ELSE
L=L+1
AMAT(I,L)=GBNMT1(J,1)*A%(-1.0:%%(J}
ENDIF
73 FORMAT(2X,F10.5)
80 CONTINUE
c
bo 1060 J=1,4
IF (BFLAG2'J) .NE. 'U’'‘ THEN
E-%+)
LHS 1 .:=GRNMTZ2.J,] sBC K sB® -) asJ-1HS I
ELSE
L=1-1
AMAT I,L =GRNMT2,J,1:%Bs -1 s3 J-|
ENDIF
160 CONTINUE
-
-
ELSE
K:0




L=0
po 1o J=1,4
IF (BFLAGl.J) .NE. 'U') TBEN
K=K~1
LES1)=GENMT](J,2)8BC{E ;#A*(-]1.0,82(J~1+LRS!(]
ELSE
L=L+1
AMAT(I,L)=GRNMT1(J,2)2A%(-1.0)%%(J)
ENDIF
110 CONTINUE

po 115 J=1,4
1F (BFLAG2(J) .NE. 'U') THEN
KE=K+]
LBS(1)=GRNMT2{J,2)*BC{K ; *B*(-1)88(J;+LHS(I;
ELSE
L=L+1
AMAT(I,L)=GRNMT2(J,2;%B*(~1)%%(J-1)
ENDIF
115 CONTINLE
ENDIF
c
Cs
CEESEBESEREE S 2R Rt NSSITLLSXNNRESETISTRIARXEIRLRXRINTLEAIRLRSAZAXATEIIIRS
Cs
Cs MCVE THE TERMS ORIGINALLY ON THE LHS TO THE RHS, FORM A NEW AMAT
Cs MATRIX AND A NEW LHS MATRIX WHICH CCRRESPFOND TO THE A AND B MATRICES
Cs OF THE SYSTEM AX:B
Ce
CRSEs S AR RS S XX AR SRR RRRRETR AR ES ARSI NSRIRTALS XS SRR CRSTIATLERCRANLLS
Cs
IF .BFLAGl(4; .NE. 'U' .AND. 1 .EQ. 1) THEN
LES(1'=LBS{1)+ROSBC{BCPOS(4;:
ELSE IF (BFLAGl(4) .EQ. 'U' .AND. I .EQ. !) THEN
AMAT(I,POS(4))=AMAT(1,P0S{4')-RO

ENDIF
c
IF (BFLAG2(4) .NE. 'U' .AND. 1 .EQ. 2) THEN
LAS(. '=LBS{2)+RO*BC(BCPOS(8),
ELSE IF (BFLAG2(4) .EQ. 'U’ .AND. I .EQ. 2) THEN
AMAT(I,POS(8))=-AMAT(I,POS(8))-RO
ENDIF
c

IF (BFLAG1(3} .NE. 'U' .AND. 1 .EQ. 3) THEN
LAS{3)=LHS(3)-RO*BC(BCPOS(3);

ENDIF

IF (BFLAGl-4: .NF. 'U’ .AND. 1 .EQ. 3. THEN
LHS 3 =LHs 3 -BC BCPOS.-4

ENDIF

IF ‘BFLAG!.3. .E@. 'U'' _AND. 1 .EQ. 3 THEN
AMAT. 1 ,POS. 3 =AMAT.1,POS . 3: *RO

ENDIF

IF BFLAG!. 4 .EQ. 'U’ .AND. 1 .EQ. 3 THEN
AMAT 1.PNS 4 zAMAT 1.P0OS 4 -1.0

ENDIF




.

W-:":——_:"—A,

c
IF (BFLAG2(3) .NB. "U’ .AND. I .EQ. 4) THEN
LBS(4)=LHAS(4)~ROXBC(BCPOS{T7))
ENDIF
IF (BFLAG2(4) .NE. 'U' .AND. 1 .EQ. 4) THEN
LES{4)1=LES(4)+BC{BCPOS(8",
ENDIF
IF (BFLAG2(3) .BQ. 'U' .AND. I .EQ. 4% THEN
AMAT(I,POS(7))=AMAT{1,POS(7))+RO
ENDIF
1F (BFLAG2(4; .BQ. 'U' .AND. 1 .BQ. 4 THEN
AMAT(I ,POS{B))=AMAT(I,POS!8))-1.0
ENDIF
A
101 CONTINUE
c
cs
CERtER AR AR RN N R AN AR AT SRR N ER SRR LR A RSP R RN ITIIIIIIIIISLL223 2
Cs
Cs FINALLY, ADJUST THE LHBS TO ACCOUNT FOR THE EXTERNAL LOAD
Cs AND PLASTICITY BY CALCULATING AND SUBTRACTING APPROPRIATE
Cx TERMS.
Csx

CEEESSXASIEISAEIIREESLLIRLENBEAREXAISLEEERI TSRS XNSRXILIREIBRTR ISR XL
Cs

c
K=NINT(ADJ(2})
DEL=(A-B./ADJ(2)
C
0O 500 1=1,K
R=B-DEL/2.0+REAL{I)%DEL
BO=A-ADJ(1)
STTAV(I,1;=(STT(I,9)+STT(1+1,9))/2.0
STTAV(I,2)=(STT(I,10)+STT(1+1,101)/2.0
CALL GRNFNC!(R,RO,NU,D,GRNMT])
LOTOT(1)=LDTOT{1)+LOMAT)(I)*GRNMT]1(],1}*R
MPRTOT(1)=MPRTOT(1)+STTAV(I,1 ' ®(-GRNMT1{3,1)/D~
- NU/R&GRNMTI(2,1))%DEL*R
MPTTOT(1)=MPTTOT(1;+STTAV(1,2)%(~GRNMT1(2,1)%DEL"
LDTOT(3)=LOTOT(3)+LDMATI{I)2GANMT1(1,2;*R
MPRTOT(3)=MPRTOT(3)+STTAV(1,1)%(~GRNMT1(3,2:/D~
- NU/R*GRNMT1(2,2))¢DEL3R
MPTTOT(3)=MPTTOT(3)+STTAV(I,2)%(~GRNMT1(2,2)%DEL)
RO=B+ADJ (1)
CALL GRNFNC(R,RO,NU,D,GRNMT])
LDTOT(2)=LDTOT(2 +LDMATI(T)*GRNMT1/ 1,1 'R
MPRTOT(2)=MPRTOT:2:+STTAV(1,) 8! ~CARNM¥T1:3,1 D~
- NU/RSGRNMTL:2,1: sDEL¥R
MPTTOT:Z =MPTTOT. 2'«STTAV I,2 # -GRANMT} 2,1 ¥DF!
LDTOT 4,=LDTOT .4 ~LOMATL 1 SGRNMTi 1,2 3R
MPRTOT 4 =MPRTOT 4:+STTAV:1,l.% -GRNMT!. 3,2 1D-
- NU/RSGRNMT1/2,2: 3DELsSR
MPTTOT: 4 =MPTTOT(4 +STTAV:1,2 & -GRNMT] 2.2 sDEi1
500 CONTINLE
C




Do 105 1=1,4
LES(I)=LES(TI)-LDTOT(I1)+MPRTOT(])+~MPTTOT: I}
105 CONTINUE

Do 1000 I=1,4
LDTOT(1)=0.0
MPRTOT(I)=
MPTTOT(I)=

1000 CONTINUE
c

RETURN
END

c

Cs

CEEEEERREE A SRR EBESTALITARSSEINRSIERERSRFABSESSTRITRALSILSIFLESLS
Cs

c¢ SUBROUTINE GRNFNC

Cs THEIS SUBROUTINE CALCULATES THE VALUES OF DEFLECTION, SLOPE,
Cs MOMENT AND SHRAR AND ASSOCIATED DERIVATIVES FOR THE GREEN'S
C® FUNCTION, AND RETURNS THESE VALUES TO THE MAIN PROGRAM. TO
C% JNDICATE DERIVATIVES OF PARAMETERS, THE NUMBER 1, 2. OR 3 IS
Cs TACKED ON TO THE END OF THE VARIABLE NAME. HENCE, THt FIRST
Cs QOERIVATIVE OF L% WRT PO IS 191

CHESETLTERS R URRRR R X RN EE RN EIRANEEARRERRSRARRSARXI KIS RRERTREL
cs
c

SUBROUTINE GRNFNC(R,RO,NU,D,GRNMAT)
C

IMPLICIT REALS8 (A-H,0-2)

REAL$B NU,GRNMAT{4,6),13,131,L32,L33,19,1L91,1L82,193
$INCLUDE: 'COMMON.FOR®
c

w=1.0

A=GROM({ 1} +ADJ(4)

B=GEOM(2)-ADJ(4)

THB:=0.0

MB 0.0

QB=0.0

IF (R .GT. RO, THEN
RRO=1.0

ELSE
RRO=0.0

ENDIF




¢

Cs
Cxsxsx
cs

Cx

Ccs D
cx

[£ 22321
Cs

c

+

-

+

EEEXEEEEEE LR LS SRS SRS RREAREEFEFSESIEISEIIEESLALIENEEESRSRRENSER

CALCULATE PLATE CONSTANTS AND PLATE FUNCTIONS, AND THEIR
BRIVATIVES

EISYSEREAREEREBESSRE N RSN LSES LS EA BRI IR LLLIEISNIZESNELSIRLSNES

L3-RO/4.0/A%{((RO/A)%%2.0+1.0)3DLOG:A/RO)+(RO/A)*322.0-1.0)

131=1.0/4.0/A8(DLOG{A/RO}%(3.08R0%%2.0,/A322,0+1.0)+2.02
(ROS22.0/A332.0-1.0)

132:1.0/4.0/A4%/6.08R0/A%%2 0sDLOG'A/RO}-RO/AX3%2.0-1.0/RO;

133:=1.0/4.0/A%(6.0/A%%2 03 DLOG{A-RO - -1.0'+1.0,/A%82.0+1.0/RO
%2.0)

L9=RO/A%((1.0+NU)/2.0%DLOG(A/RO)~{1.0-NU)/4.0%(1.0-(RO/A*%2.0:;
£91=1.0/4.0/A%(2.0%(1 . 0+NU)IDLOG(A-RO;-(3.0sNU+1.0)-3.0%(1.0-NU,

SRO%%2.0/A%82.0)
L92=~(1.0+NU)/2.0/4/R0O-3.08RO%(1.0~-NU;/2.0/4%23.0
L93=(1.0+NU)/2.0/A/RO%82.0-3.0%(1.0-NU)/2.0/A%%3.0

Cl=(1.0+NU)/2.03B/ASDLOG(A/Bi+(1.0-NUY/4 0%(A/B-B/A)
C7=1.0/2.08(1.0-NU%22,0)%(A/B-B/A)

G3=RO/4.0/R%(( (RO/R'%%2.0+1.0)%DLOG{R/RO)+(RO/R)%%2.0-1.0)*RRO

G31=1.0/4.0,R%(3.0%R0%%2.0/R*%2,02DLOG/R/RO)+2.02RO*52.0,/R322.0~

DLOG.R’RO:-2.0 ' *RRO
G32:1.0-4.0R% 6.0#RO R?32.02DI0G R RO +RO-R332.0-1.0,RO *RRO

G33:1.0/4 . O/R%6.0.R¥s2.03% DLOG.-R-RO:-1.0:+1.0,R*%2.0+1.0/RO%32.¢C

BRRO

G6:R0O/4.0/R%: (RO/Ri%#2.0-1.0+-2.0%DLOG(R RO, ) *RRO
G61l=1.0/4.0/R*(3.08 RO%%2. 0 R*¥#2.0-1.0:+2.03DLOG{R/RO ", #RRO
G62={3.0%R0O/2.0/R%23.0-1.0,2.0/RO/R;*RRO
G63=(3.0/2.0/R%%3.0+1.0/2.0/R/RO%%2.0,2RRO

G9=RO/R#((1.0+NU)/2.0%DLOG(R/RO)+(1.0-NU}/4.0%(1.0-(RO/R)%%2.0;}

$RRO
691=1.6/4.0/R*(2.0%(1.0+NU)3:DLOG(R,/RO}~1.0'+{1.0-NU)-3.0%

(1.0-NU)SRO%32.0/R%%2.0)%RRO
G9Z=~1.0/4.0/R*(2.0%(1.0+NU)/RO+6.0%R0 R#22.03().0-NU})*RRO
G93=1.0/4.0/R%(2.08(1 O+NU)/ROS32 0-6.0/R8%2.08(1.0-NU})*RRO

F1={1.0+NU /2.0%B R*DLOG 'R/B'+:1.0-NU')’'4.0% R B-B R}
F2:=1.04.0%.1.0-.8B'R #%2.0%:1.0+-2.0%L10G-R B

F3:B/4 0 'R%¢ 'B R %82.0-]1.0'3sDLOG R B.».B k *32.0-1.0"
F4:1.072.0%::1.0-NU 2B R~ 1.0-NU'#R.B

F5=1.0/2.0%°}.0- B-8 332.0

F6=B/4.0 'R*' /B R #32.0-1.0-2.03DLOG R'B
F7:1.0,2.0%'1.0-NUs*Z. 0. ¢« R B-B R

F8:1.0-2.0% 1, 0+8U+{1.0-NU & B R 852 0

F9:=B Rs. i.0-NU L7.0%DLOG R.B - 1. .U-NL 4.02 1.0- P R ¥ 9




c

Ccs

CEXESESESSES RIS RTL RN RSXIRSIRRSSSISSENTIENIITSSSLIREERTISLLLLLSRES
Cs

cs CALCULATE THE DEFLECTION, SLOPE, MOMENT AND SHEAR, AND

cs ASSOCIATED DERIVATIVES, AND STORE IN THE MATRIX GRNMAT.
Cs THIS MATRIX IS A 4 BY 4 MATRIX, WHERE ROW POSITIONS ARE AS
Cs FOLLOWS

Cs

cx 1 DEFLRCTION

Cs 2 SLOPE

cx 3 MOMENT

Cs 4 SHEAR

Cs

cx AND COLUMN POSITICONS ARE AS FOLLOWS

Ccs

Cs 1 GREEN'S FUNCTION (NO DERIVATIVES)

Cs 2 1ST DERIVATIVE OF GREEN'S FUNCTION WRT RO
Ccx 3 2ND DERIVATIVE OF GREEN'S FUNCTION WRT RO
Cx 4 3RD DERIVATIVE OF GREEN’S FUNCTION WRT RO
Cs

cs FOR EXAMPLE, THE VALUE RETURNED BY GRNMAT(2,3) REPRESENTS

Cs THE SRCOND DERIVATIVE OF THE SLOFE FOR THE GREEN'S FUNCTION
Cs WRT RO

(33

CRREE NN AR TR RS A E A AN RN S SN RS SRS NSRS AR A AR E AR SR XU RRIL2 LTS

[og 4

[
YB:-WxA$83.0/De{Cl*L9/C7--1L3"
THB:=WsA33%2.0/D C7%L9
GRNMAT(l,1'=~(YB+THB*RXF)-WsRx33.0.D%G3
GRNMAT(2,1)=-THB®F4-WsR3%2.0,D*G6
GRNMAT(3,1)=THBsD/R*F7-WsR$G9
GRNMAT(4,1}-WsRO, R2RRO

c

C
YBl--WsAX33.0/D% {Cl8L31/C7-1L31)
THBl:=W2A$22.0/D/C7%L91
GRNMAT(1,2)=~(YB1+THBISRsFl-wWsR¥23.0/03G31;
GRNMAT(2,2)=THEB1sF4-WsR%22 0,D%G61
GRNMAT({3,2)=THB1%D, RsF7-WeR3G91]
GRNMAT(4,2)=W/R*RRO

C

(o}
YB2:--WsA%33.0,0%.C1/C7%192-L32
THB2:W3A23].0,D CT#LO2
GRNMAT: 1,3 .- YB2-R3FISTHBL wskt23. 0 DsGs2
GRNMAT(2,3 -FA4sTHBC-wsR2s2 .0 D2G6C
GRNMAT.3,3::D3F7 R*THB. -wsRxGYCl
GRNMAT 4,3 =0

C

C
YBR:-wsAzs3.0 Ds ) CT#19%-133
THE3:-WsAs22.0 D.C78L83
GRNMAT: 1,4 - YB3-RSFISTHHI-weRssx2. 0 D2352




GRNMAT(2,4)=F4STRB3-WsR2%2.0/D3GE3
GANMAT(3,4;=DsF7/RsTHB3-WsR2G393
GRNMAT(4,4)=0

c
RETURN
END

c

Cs

CESERBERASSXEEETEEER SN XSLL ARSI ARERRSRTITSESAISXRETRISAFIEZINEEIS
Cs
cs SUBROUTINE GAUSS

Cx THIS SUBROUTINE USES GAUSS ELIMINATION TO DETERMINE TEE

Cs UNENOWN BOUNDARY CONDITIONS. THE MATRICES A AND B OF THE

Cx EQUATION AX=B ARE PROVIDED BY THE SUBROUTINE AMATR. THIS

Cs SUBROUTINE THEN RETURNS THE MATRIX X OF UNENOWN BOUNDARY

Cs CONDITIONS. THIS SUBROUTINE WAS TAKEN FROM THE BOOK

Cs "NUMERICAL ANALYSIS"™ BY L.W. JOHNSON AND R.D. RIESS.

Ce

[ 3223 2R3 2 RS 2RSSR 222 R R R 2222222022 R 22222 2 R R e 24

Cx
(o}
SUBROUTINE GAUSS.B,A,X)
o)
IMPLICIT REAL®¥B (A-BR,0-Z
CHARACTER®*22 BCLBL.8;
REALS8 A{4,4),8(4),X(4),BCMAT{B},BC(4:
DIMENSION AUG{50,51
INTEGER POS(8:,BCPOS 8B ,M,N
[of
NM1=3
NP=5
N:=4
c
C SET UP THE AUGMENTED MATRIX FOR AX=8
C
0o 2 I=1,N
00 1 J=1,N
AULG!T,J0=A(1,J0
i CONTINLUE

AUG 1,NP.:B. 1
2 CONTINUE

¢ THF OUTER LOOP USFS ELEMENTARY ROW OPFRAT]IONS TO THANSFORM
T  THE AUGMENTED MATRIX TO ECHELON FORM




[e]

Do B I1=],NM]

SEARCE FOR THE J.ARGEST ENTRY IN COLUMN I, ROWS I THROUGH N
IPIVOT IS THE ROW INDEX OF THE LARGEST ENTRY

s NaNeN el

PIV0T=0.0 .
Do 3 J=I,N
TEMP=ABS(AUG{J,1":
IF(PIVOT.GE.TEMP GO T0 3
PIVOT=TEMP
IPIVOT=J

3 CONTINUB
IF:PIVOT.BQ.0.0: GO 70 13
IF(IPIVOT.EQ.I. GO TO §

C
C INTERCHANGE ROW I AND ROW IPIVOT

C
DO 4 K=I,NP
TEMP=AUG(I,K!
AUG(I,K)=AUG(IPIVOT,R)
AUG{IPIVOT, E)=TEMP
4 CONTINLE
c
C ZERC ENTRIES (1+1),(1+2:,...,:N,1;, IN THE AUGMENTED MATRIX
[
5 IP1=1-1
D0 7 R=IPI,N
Q=-AUG K, I AUG/I,I:
ALG K,1::0.0
DO 6 J:=IPLl,NP
AUG/K,J)=Q3AUG(1,J:+4UG K, J)
6 CONTINUE
7 CONTINUE
8 CONTINUE
IF{AUG(N,N).BQ.0.0} GO TO 13
o
C BACESOLVE TO OBTAIN A SOLUTION TO AX:=B
C
X(Niz=AUG(N,NP)/AUG(N,N}
DO 10 K=1,NMl
Q=0.0
0o 9 J=1,K
Q=Q+AUG(N-E,NP-J)*X{(NP-J:
9 CONTINUE
X N-K - . AUG!N-K,NP--Q ' /AUG'N-K,N-K°
10 CONTINLUE
¢
C CALCULATE THE NORM OF THE RESIDUAL VECTOR, B-AX.
£ SET [EHROR:=1 AND RETURN
c
RSQ=0.0
pe 12 1=1.N
Q:-0.0
oCc 1] J:=1,N




Q=Q+A{1,J)8X(J"
11 CONTINCE
BESI=8B(1)-Q
BMAG=ABS (RESI!
RSQ=RSQ+RMAGS32
12 CONTINUE
BNORM=SQRT(RSQ)
IERROR=1

ABNORMAL RETURN --- BEDUCTION TO ECHELON FORM PRODUCES A ZERO
ENTRY ON THE DIAGONAL. THE MATRIX A MAY BE SINGULAR.

Oo0a0nn

13 1ERROR=2
c

RETURN
END

c

Ccs
CELEEERIEEIIAILITATREBXSRSIX ISR ENLXTEIS LIRS IEXESRIITIRNLRTISLSS
Cz

Cs SUBROUTINE BCM

Cs

Cs THIS SUBROUTINE TAEKES THE KNOWN BOUNDARY CONDITIONS STORED

Cs BY THE PROGRAM INPUT IN THE FILE BCM.DAT AS WELL AS THE

Cx “UNKNOWN™ BOUNDARY CONDITIONS RETURNED BY THE SUBKOUTINE GAUSS
Cs AND CREATES THE BX! MATRIX OF BOUNDARY CONDITIONS BCMAT

[of 2

CEXEI S S P AT RS LN R R RS $SSS TSP IR XB LIRS TIIILLNLIIISEIRRSISSERRILREY
Cs

c
SUBROUTINE BCM(POS,BC,X,BCMAT:
c
IMFLICIT REAL$8 (A~H,0-Z3C
REAL$B BC(4),X(4),BCMAT. 8)
INTEGER POSI(B)
c
K:0
L=0
po 120 1-1,8
IF (POS/I} .GT. 0; THEN
K=K-1
BCMAT(1'=X(K,
ELSE
L-L-1
BCMAT 1§ =BC L.
ENDIF
1Y0 CONTINUE
RETURN

END

121




o
Cs
CESSIEEEFRAEEESRET AL AATNES IS EELIILLIRSRASIRLLRSERSERITIESELLTITRALSEESD

Cs SUBROUTINE SOLVER

Ce THIS SUBROUTINE SOLVES TAKES THE COMPLETE SET OF BOUNDARY

Cs CONDITIONS SUPPLIED BY THE SUBROUTINE BCM AND SOLVES THE PLATE
cs BENDING PROBLEM ACROSS THE FLATE WIDTH. IMPORTANT PARAMETERS
Cz SUCB AS DEBFLECTION, SLOPE BTC ARE STORED [N THE ARRAY STT

CREXSETEERAEEXS ST RS SRSIEERTR XN LIS ESXSTREIINISEREETIIILIREIZNSLTSRERS

Ce
c
SUBR” UTINE SOLVER.XMT, BCMAT:
C
IMPLICIT REAL%*8 {A-H,0-2"
c

REAL®8 GRNMT1.!4,6:,GRNMT2 4,6 BRCMAT B DT 50,4 ,SM 50,4 N
+ XMT(50),STTAV{50,2.
INTEGER M, N

$INCLUDE: 'COMMON.FOR'

C
Cs
CERt s RNt NS AN SRR R AL E AR L2 T SIS 22334335 2RERL3RERISNRRIEEEYIET
C»
Cs REZERO THE MATRICES DT AND ST
cs
CEREEBXXIEIXTIRSXIBABAXSETISIESSILI LRSS SSSEINSL ST ST RNIERSTCTEIL LU
Ccs
C

DO 0 I1-=1,5¢

po 5 J=1,4
SM(I1,J3:=0.0
DT.1,J1:=0.0
] CONTINUE
10 CONTINUE

c

A=GEOM{ 1)

B=GEOM: 2

NU=GEOM! 3}

D=GEOM( 4)
C
c
o

RO-8

DEL A B -ADI 2

NOINT ART 2

122




c

Cs

CHEES LSS SIEE 3NN LS RSS2 RS RTINS ISR SSSRESSRIRTIISESILERILIETS
cs

cs THIS LOOP CALCULATES THE LOAD TERM AND THEE PLASTIC MOMENT

Cs TERM FOR EACE EQUATION. I REFERS TO THE RADIAL STATION AND J

Cs REFERS TO THE BQUATION, WHERE TBE FIRST EQUATION IS FOR

Cx DEFLECTION, THE SECOND FOR Dw.DR, THE THIRL FOR D"2w DR 2 ANC

Ct THE FOURTH FOR D 3W/DR“3. THE DERIVATIVES ARE THEN USFDL TO

Ct CALCULATE SLOPES, MDIMENTS AND SHEARS

cs

CISEEE TR S SS TSR ERRLSUR SR RRSSLISSSRRFS LB RS SLL RS S LLELIL 223222222
[ ]

~
<

DO 155 1:1,N+1
C

IF (1 .EQ. 1. THEAN
RO:=B+ADJ. 1

ENDIF

IF /1 .BQ. (N+l,: THEN
RO=A-ADJ ()

ENDIF

DO 150 M=1,NINT ADJ 2"
R=B-DEL ‘2.0+REAL:M sCEL
CALL GRNFNC R,RO,NU,D,GRNMT!
STTAV. M, l.= STT.M,9 ~STT'M-1,8,./2 0
STTAY M, 2 = .STT'M, 10 -STT.M+1,i0." 2.0
DC 140 J=1,4

DT 1.2 =DT 1,J°+ XMT M XGRNMT] |,

SR DELSSTTAV M. 3

- ~GRNMTI 3,1 D-NL R3GR) 1 2.1, sk
- ~DEL®STTAV M, 2 2GRNMTL 2,J
14C CONTINLE
150 CONTINCE
IF 1 .BQ. 1 THEN
RO:=B-DEL
ELSF
RO:=RO+DEL
ENDIF
155 CONTINLE
C
c
Cs

CrEXEITXLELBEELL ISR LIRS LN L SRS BRRAXRNXEAXIRIIANEEXIANS SNSRI RILSL

fon §

Cs AT EACH INCREMENT OF WIDTH DEL ALONG THE PLATE RADIUS, CALCULATEF
Cs THE DEFLEUTION, SLOPE, MOMENT AND SHEAR, WHICH ARE STORED IN

T  STT EACH COLvMN REPRESFNTS RO, Y, TH, M, @, Y'', v ' CUKKES-

Cs PONDING T7 EACH STATION | ACRCSS THE RARIUS

Cs

CE e s s Tt st sa s asstt s s sastaRsstuss st Rs tassssasssssastsstsessanasere
PR
[of

DG 200 1-1,N-1

T

iF DoEC. THEN




170

180
C
cs

CEEXIRSACTISISFAZEISETEISIBILEEE S S SILISEIEARISSLENITLSTIEIRSITIIKARRITIRESTSCY

cs
Cs
Cs
(o §
(o8
Cs
[ ]
Cs
rs
[
Y
a1

BO=B+ADJ (1}

ENDIF

IF (I .RQ. (N+1)) THEWN
RO=A-ADJI( 1.

ENDIF

R=A

CALL GRNFNC{R,RO,NU,D,GRNMTI

R=B

CALL GRNFNC{(R,RO,NU,D,GRNMT2
vo 180 J:=1.4
Do 170 K:-1,4

SM{T,J “ARGRNMT] K,J 8BCMAT X 2,-1.0 22K~
BEXGRNMT2 K,J *BCMAT K-4 8 -1.0183K+SM 1,
CONTINUE
SMtl,J)=SM(1,J1+DT 1,7,
CONTINLE

STT(1,]l: - RADIUS OF INTEREST
STT(I1,2. - DEFLECTION

STT{1.3) - DW/,DR

STT{1,4) - RADTAL MOMENT

STT!I,5 - SHEAK

STT¢I,6; - TANGENTIAL MOMENT
STT{(I1,7: - DW'l DR"2

STT 1,8 - DW 3.DR"3

STT. 1,9 - RADIAL PLASTIC MOMENT

STT. 1,10 - TANGENTIAL PLASTIC MOMENT

R R R R R R R R R R RN R R R R R R R R S 2 S S E SRR

o]

Cs
e
o ]
[ ]

1RO
2. :-5m:
3i:1
L7 1
8 :1
[,4:=-0
STT 1,5 :-D¢
. STT 1.3
STT 1,6°=-D

THIS 1S A ST
HAVING THE EPSIL

IF 1 .EQ.
RO:-B-DEL
ELSE
RO-RO-DE
ENDIF

I,z
.0 RO®:SM [ 3
1

0 ROs SM

L2

0. HOs SM: 4

$.STT. 1,75 +NU

‘STT:1,8°+1.0
# 1. 0/ROSSTT

EP TO PREVENT
CN THROWN IN.

1. THEN

L

124

STTi 1,2, .

-2 03STT. 1.3

~3.0%STT(1,7

‘ROESTT. 1,3
CROSSTT!T.7: 1.0,RO%42.0%

1,3 +NUSSTT:!1,7:"

THE INTEKIOR POINTS FROM

R N R e gy, II---llllli-q.J
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z
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t

13
¥
s
%
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dY 0 CLNTINUE

RETUEN
EnC

3T R PSR E P L3RR AR ISR NI P AXIT AL LS AR RN LTRSS EIFEEILLIALIRIITSTL A2
SURROUTINE YLD

THEIS SUBRCGUTINE TAKES THE FLATE BENDING SOLUTION FOR THE INFUT
LOAD INCREMENT AND CALCULATES THE LOAD AT WHICH YIELDING OF THt
OUTER F'BER Will OCCUR. THE LOAD MATRIX ]S THEM INCREASED TC
THIS VALUE, THIS IS ESSENTIALLY A TIMF SAVER., TC AVOI!D STEPPIN
UF TAE LOAD IN THFE ELASTIC RANGE

[ R RS R e R R P R R R R R R E R S R R Y]

SOBROUTINE YID KR, IMAX, LDMAT]

IMBLICTT KEAL®E A-H.D 0
STHYAX , STTM4a
b TMAX

INCTTDFE T IMMON PR

FIND TH: LOCATION ATHOSS THE PLATE WHERE THE BENDING MOMENTS
AhE THE HIGHEST

STRMAY (1.3
SITMAX O O

T 420 T-1UNINT aDJ 0 e
1¥  ABS STT 1.4 LGT. STRMAX THEN
STRMAX-AERS STT 1.4
TRMAY -
ESGIE
B Totivan
Y
Do May
ENDOE
TP TRMAN ST ETTwan
L%
M AW
1256




EK=2
IMAX=1TMAX

ENDIF
122 CONTINUE
c
o} ]
o J CALCULATE THE EQUIVALENT STRESS AT THE LOCATION WHERE STRESSES

Cs ARE BIGHREST. COMPARE IT TO THE YIELD STRESS. THEN RATIO UP THE
Cs LOAD MATRIX ACCORDINGLY

Cs
C
BERMAX=STT: IMAX,7 "$GEOM:5 /2.0
ETMAX=STT IMAX,3 ' 2GEOM 5. /2.0-STT IMAX,!
SAMAX=GEOM 61 "GEOM'T. . 1.0~GEOM 3 #2:.0°'% ERMAX-GEOM J $ETVAX
STMAX=GEOM '8! /GEOM 7 ’+1.0~GEOM 3 #32 .0 % ETMAX-GEOM 3 SFAMAX
SEMAX=SQRT SRMAX®$2 O-SRMAXESTMAX-STMAX2s2.0
R=GEOM: 6 /SEMAX
DO 126 J=1,NINT'ADJ 2.
LDMAT]1: J . =RSLOMATL: J
126 CONTINUE
WRITE(%,130) LDMATL(1:
130 FORMAT(2X, "LDMATI = ' F20.10.
c
RETURN
END
C
Cs
X s R R R R R R R R R R e S R E R S S RS SR SR R R
Cs
Cs SUBROUTINE PLAST
Cx
cs THIS SUBROUTINE CALCULATES PLASTIC MOMENTS USING A TRAPAZOIDAL

cs RULE INTEGRATION SCHEME. THE SUBROUTINE WILL ONLY HANODLE
Cs LINEAR ELASTIC-PERFECTLY PLASTIC MATERIALS.

Ccs
CEXSEREIETRRAERISTTIREBIRIITASIL AL RS EX SRS LE ST IRLE LR AR ARSI LLER LSS
Cs
c

SUBROUTINE PLAST: 1
C

IMPLICIT REAL*® A-H.0-7 C
REALSE MRP ,MTF, NL
INTEGER [Z

SINCLUDE 'COMMCN. FOR'

126




. o

4
Cs
CEEEBEEAEXTEABILIIRSBELS TSR TIELREIEARIRABIIIIAIELEAITIINLEE R SRXY
Cs

Ccs VARIABLBS USED IN THIS SECTION ARE DEFINED AS FOLLOWS

cs

[ 4 DER - TOTAL RADIAL STRAIN INCREMENT

Ccs DET - TOTAL TANGENTIAL STHAIN INCREMENT

Cs OERE - ELASTIC RADIAL STRAIN INCREMENT

Cs DETE - ELASTIC TANGENTIAL STRAIN INCREMENT

Cs DEL - DEPTH INCREMENT

Cs 1 - RADIAL POSITION STATION NUMBER

cs 1z - HALF-THICEKNESS STATION NUMBER

Cs Dst - RADIAL STRESS INCREMENT

cs Ds2 - TANGENTIAL STRESS INCREMENT

Ccx STRT - MATRIX HOLDING THE TEMPORARY STRESSES AT THE

Cs GIVEN LOADING INCREMENT (1:=RADIAL.Z2=TANGENTIAL
Cx SEBT - TEMPORARY EQUIVALENT STRESS - USED FOR YIELD

Ccx CRITERIA

Cs SE - BQUIVALENT STRESS FROM PREVIOUS INCREMENT

Cs DEPT - ARRAY CONTAINING THE TEMPORARY STRAIN INCREMENTS
24 AT THE GIVEN LOADING INCREMENT (1:=RADIAL;2=

cs TANGENTIAL

cs R - CONSTANT REFERRING TO THE FRACTION BEYOND YIRLDING
[of ] THAT OCCURRED DURING TBE COURSE OF THE LAST LOAD
cs INCREMENT

Cx Z - DEPTH

cx

CRAEZAE RIS TS AT IR R RN RIS ISREERFTAERNISNANERALTITRNENRASEREINTLI S22
cx
c
STT.1,9,:0.90
STT!1,10:=0.0
SSUMR=0.0
SSUMT=0.0
DEL=GEOM(5},2.0/(ADJ(6)-1.0:
2=0
E=GEOM(6)/GEOM(7)
NU=GEOM 3!
c
DC 500 IZ=NINT!ADJ(6'',1,-1
C
Cx
CHE BRI At A IS A AR A B S R E R A RS AR AN SRR AS S SRETASSRLISSRENRIRLNLS
Cs
[ag 4 THIS SECTION CALCULATES THE STRAIN AND STRESS INCREMENTS
C* CORRESPONDING TO THE GIVEN LOAD INCREMENT. IT THEN ADDS TERE
Cs STRESS INCREMENT TO THE PREVIOUS TOTAL STHESS TC CALCULATE THE
& EQUIVALENT STRESS. THE EQUIVALENT STRFSS IS COMPARELD TG0 THF
Cs  UNJAXIAL YIELD STRESS TO SEF TF YIELDING HAS OCCURRED. 1F S0,
€2 THE PLASTIC STRAIN INCREMENT [S SET EQUAL TC THE TCTAl STHalM
¥ INCREMENT
Cs
TSI R e St AR A RS E NS 3253 EXS 8243 ARR SRS RIEATURITEIETRRESILTEISNICLS
e
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DER=-STT:1,7's IZ-1:8DFL

DET=-STT:I,3:% 1Z-1 sDEL/ST{1,1.

DERE=DER-DEPT 1.1Z.1,

DETR=DET-LEPT. 1,12.2°

DS1=E/(1.0-NUs$2.0,% . DERE+NU*DETE:

DS2=E/{1.0-NU#82.0. 2 DETE+NUSDERE

STRT!1,1Z,1:=STR.1,1Z,1;-DS]

STRT!1,12,2 . =STR I1,1Z,2:+DS2

SET(1,IZ'=SORT-STRT:1,12,1 %22 O-STRT.1,1Z,i %STRT 1,1Z,2
- +STRT!1,12,2 %32,

Cs

Ca SEE IF YIELD CRITERIA IS EXCEEDED. 1¥ S0, REZERC THE PLASTI!C
Cs STRAIN INCREMENTS AND THE STRESS INCREMENTS ALSO, RETURN TO THE
Cx MAIN PROGRAM IF THE OUTER FIBER HAS NOT BEGUN TO YIELD

Cs

c
IF (SET'I,1Z; .LT. GEOM . 6)' THEN
DBPT(I1,1Z,1)=0.0
DEPT(1,12,2':0.0
STT(I1,9)=0.0
STT(I1,10'=0.0
IF (12 .BQ. NINT(ADJ(6))) THEN
RETURN
ENDIF
RLSE
SET(I,I1Z -GEQM 6.
DEPT I,1Z.1 =DER
DEPT:1,1Z.2 :JET
IF (SE:1,1Z .LT. GEOM 6:' THEN
R=(SET I1,1Z -GEOM'6 ./ SET!1,1Z -SE"1,12
DEPT 1,1Z,)=R*DEPT:1,12.,1
DEPT:1,12,2 =R¥DEPT:1,I1Z,2:
STRT [,I1Z,1:=STRI,1Z,1'-DS1* 1-R;
STRT(1,12,2 =STR.1,1Z2,2:+DS2% 1-R"
ENDIF
ENDIF
[
Z=Z+DEL
c
500 CONTINUB
[
Cs

CRFRE RIS IS LI PR S RRE LR RER RS IS IE SRR EE RN AN UIRRISSESEISRESETIIIOTES
cy
Cs PERFORM A TRAPAZOIDAL RULE INTEGRATION OF THE STRAIN OVER THE
C* PLATE HALF THICENESS. AND MULTIPLY BY I TO¢ GIVE THE TOTAL KA DAl
C*  AND TANGENTIAL PLASTIC MOMENT INCHEMENTS ~STT [.84 AND 877 1. 0¢
s
CEER s Xt Bs S NS TR AR USRS R SR AT SIS FESASSISES TSS9 8ITI2ATIR3S 0003
CE
C

2--DEL Z.0

DO 540 I2:=1,NINT ADS 6 -1
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Z=Z+DEL

OMPR=: (DEPT(I,1Z.1 +DEPT(I,1242,1))+~GEOM:3 * . DRPT 1,12,2,
- +DBPT(I,12~1,2:),%2,2.0

DMPT={ (DBPT(1,1Z,2)+DEPT(1,12~1,2,)+GEOM 3 .8:DEPT.1,12,1
- «DEPT(I1.12Z+1,1)),82,2.0

SSUMR=SSUMR-DMPR
SSUMT=SSUMT+DMPT
540 CONTINUE

c
STT:1,9}=2.03GEOM ' 6)/GEOM 7)/(1-GEROM(3 %32 .0 $DELSSSUMR
STT(I,10;=2.08GEOM(6) /GEOM{7)/(1-GBOM(3)3%2.0,3DELSSSUMT
WRITE(%,600: I
600 FORMAT 2X,'LAT POS = ' 12"
WRITE(%,700. STT:1,9:,8TT 1,10
700 FORMAT 2X,'MRP = ',F20.12,"' MTP = ' ,F20.12
C
RETURN
END
C
Cs

CREERRL R LSRR AR SRS IS ARSI ARSI ER SIS IRRSS RIS IALENISILAXAITAREINENLILSES
Ccr
Cs SUBROUTINE UPDATE
Cs
ok 4 THIS SUBRCUTINE TAXES THE INCHEMENTAL STRESSES, STRAINS,
cs DEFLECTIONS, MOMENTS, ETC AND ADDS THEM TO THE PREVIOUS TOTALS
Cs ONCE CONVERGENCE OF PLASTIC MOMENTS HAS OCCURRED.
Cs
CER R s RIS ARSI IFIAINTIIRIIRSSIIITINILIIFSNIASRRIRNINIIRASRSS
Cs
C
SUBROUTINE UPDATE(STT!, IMAX,OUT,LDMAT],LL, LDMATO;
c
IMPLICIT REAL*8 (A-H,0-2:
REAL*8 STT1(50,2),LDMATO0:50),LOMATL (56, ,NU,DEL,E
INTEGER NN,OUT,LL
$INCLUDE: 'COMMON. FOR'’

c
NN-NINT ADJ 2. :~1
E=GEOM. 6. GEOM. .7
DFL-GEOM.5 2.0 “ADJ & .0
NLU:=GEOM 3
c
DO 1000 1:=1.NN
DO 303 J:=LL,10
ST 1,J ST I,J-+STT 1.J
505 CONTINUE
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Cs
Cs
Cs
Cs
Cs
Cs

980
100
C

LDMATO(I;=LDMATi T :+LDMATO. 1,

DO 980 IZ2=1,NINT.ADJ €

If THR YIELD CRITERIA BAS BEEN EXCEEDED, THEN ADD IN THF
PLASTIC STRAIN INCREMENTS AND UPDATE THE TOTAL STRESS T2
FQUAL THE TEMPORARY STRESS CALCULATEL IN THE SUBHGUTINE
PLAST

IF \SB(1,12: .GT. GEOM'6:.: THEN
8P I,1Z,1 Pt I,12,1 «DEPT 1,1
EP I.1Z,2,=€P1,1Z,2 <DBPT i.1
STR:I,I12,1,=STRT:1,12,1
STR:I,I1Z,2 ' =STRT:1,12.2
Z=(GEOM:5)/2.0/(ADJ(6 -1.0 -8 12-]
ELSE

IF THE YIELD CRITERIA HAS NOT BEEN EXCEEDED, THEN UPDATE THE
STRESSES AND EQUIVALENT STRESSES USING THE ELASTIC EBQUATIONS

STR!1,1Z,1)=-E/(1.0-NUss2.0,;% ST 1,7 8 1Z-1.8DEL
- BP(I,1Z,1:+NU*® ST{1,3 & 1Z-1)8DEL.ST. 1,1

STR!1,1Z,2.=-E/{1.0-NU*%2.0,%/ST-[,3,%.1Z-1 #PEL.ST"

- EP(I,1Z,2)+NUs ST.I,7;8.12-1,3DEL"
SE(1,1Z.=SQRT STR'1,12,).222.0-STR(1,12,1.¢*
- STR.I,I1Z.2;-STR:1,1Z,2 =22

ENDIF

1F (ABS'EP:1,1Z.1,. .GT. GEOM.9. .OK. ABS EP'1,1Z,2
- .GT. GEOM. 9 THEN

oUT=1
ENDIF
CONTINUE
0 CONTINUE

LL=2
RETURN
END
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c
Cs
COBEETRETITT ARSI RISIIFTIIFEIISSSSRISRSIRISSSRSSERBRARIIERRSEBTLELD
cs
cs SUBROUTINE RESUL
Cs
cs STOBE THE RESULTS AT THE END OF BVERY 10 LOAD INCREMENTS IN
Ccs THE FILE OUT.DAT. ALSO SCREEN DUMP THESE RESULTS.
cs
CEBES SRR EAE A AR AN AR ARSI REEBES TR S IEARIEIR AN SEAAASESRRLEIILESS
Cs
c
SUBROUTINE RESUL(MM,STT]1,COUNT,LDMATO)
c
IMPLICIT REAL*8 (A-H,0-Z)
REAL%8 STT1(50,2),LDMATO(50)
INTEGER NN
$INCLUDE: 'COMMON. FOR'
[
NN=NINT(ADJ(2Z))}+1
DEL=(GEOM(1)-GROM(2))/ADJ(2)

IF (COUNT .BQ. 1.0) THEN
WRITE(15,100)
WRITE(¥,100)
100 FORMAT(///, BEBEEEEXEXAXNEESERSSARRRBENLAREERSIRRARELEATRERL’
+ "ESREXBEERTAREXAEXEEASREANESREREX" |/ /)
WRITE(15,120) MM, LDMATO(1)/DEL
WRITE(%,120) MM,LDMATO(1)/DEL
120 FORMAT(2X, 'LOAD INCR = ',13,° LOAD = ',F.0.4,/)

WRITE(15,130)
WRITE(#%,130)
130 FORMAT(2X,*RADPOS',2X, DEFLECT ',2X,'SLOPE *',2X, 'RAD MOM '
+ L2X," MRP ' ,2X,' TAN MOM ' ,2X,' MTP °’,' SHEAR )
DO 160 I=1,NN
STM1=ST(I,4)+5T(1,9)
STM2=ST(I,6)+ST(1,10)
WRITE(15,140) ST(1,1),-8T(1,2),8T(1,3),5TM]1,sT(1,9),
+ STM2,ST(I1,10),8T(I,§)
WRITE(%,140) ST(I1,1),-8T(1,2),ST(1,3),STM1,ST(I1,9),
+ STM2,ST(1,10),8T(I,5)
140 FORMAT(2X,F5.2,2X,F7.5,2X,F7.4,2X,F10.0,2X,¥5.0,2X,F10.0,
+ 2X,F5.0,2x,F10.0)
160 CONTINUEB

WRITE(15,163)
WRITE(%,163)
163 FORMAT(/,2X, "' '

DO 1000 I=1,NN
IF (ST(I1,8) .NE. 0.0 .OR. ST(1,10) .NE. 0.0) THEN
WRITE(15,170) ST(1,1)
WRITB(#%,170) ST(I,1)
170 FORMAT(/,2X, "RADIAL POSITION = ' ,F5.2)
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165

180

200

1000

WRITE(15,165)
WRITE($,165)
FORMAT(/,2X,' DEPTH v,2x,! RRP v,2X,"  SaAp '
2x.’ ETP ',2X,' STAN v,ex, " SE A
po 200 12=1,NINT(ADJ(6))
IF (SE(I,I1Z) .GT. GROM(6)) THEN
Z=(GBOM(5)/2.0/(ADJ(8)-1.0))'(12-1)
WRITE(15,180) Z.RP(I.IZ.I).STR(I.IZ.l).RP(X,IZ,Z),
STR{1,12,2),SB(1,12)
WRITR(#,180) Z.BP(I,IZ,\).STR(I.IZ,l),EP(I.IZ.Z).
STR(1,1Z,2),SB(1,1Z)
FORHAT(?X.F6.4.3X‘FIOAB.BX,FB.1,3!,F10.8,3X,F8.l.

3X,F8.1)
ENDIF
CONTINUE
ENDIF

CONTINUE
ENDIF
RRTURN
END
COMMON GEOM(93 ,ADJ{77,ST(50,10)
COMMQON /PLSCM/ EP(50.50,2),STT<50.20?,DSFT(50,50.2r.STR(SO.SD.?

-

88(50.50),STRT(50.50.2).SET(50.50v
REALSS ADJ.ST,EP,STT.DEPT,STR,SE,STRT,SET




-
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